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NONLINEAR DYNAMICS OF A ROTOR WITH CANTILEVERED DISK RESTING
ON ANGULAR CONTACT BALL BEARINGS

S. Filipkovskyi, Assoc. Prof., Ph. D. (Eng.),
Kharkov National Automobile and Highway University

Abstract. The mathematical model of nonlinear oscillations of the rotor resting on angular contact
ball bearings is developed. The disc is fixed on the console end of the shaft. The deflection of the shafi,
and the elastic deformation of the bearings have the same order. Analysis of free oscillations is car-
ried out, using nonlinear normal modes. The modes and backbone curves of rotor nonlinear oscilla-
tions are calculated. The system has soft characteristics.
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HEJIMHEWMHASI JUHAMHMKA POTOPA C KOHCOJIbHO 3AKPEILIEHHBIM
JUCKOM HA PAJUAJIBHO-YIIOPHBIX INAPUKOITOAIIUITHUKAX

C.B. ®uiunkoBCcKMii, 101., K.T.H.,
XapbKOBCKM HAMOHAJIbHBIA ABTOMOOUIbHO-10POKHbIN YHUBEPCUTET

Annomauyus. Ilonyuena mamemamuueckas MOOeNb HETUHEUHbIX KOAeOAHUL pomopa Ha paoudaibHO-
VHOPHBIX WAPUKONOOWURHUKAX. JIUCK 3aKpenién Ha KoHconvHoM Konye eéana. Ilpoeubuvl 6ana 00Hozo
nOpAOKa ¢ ynpyeumu 0eqhropmayusamu ROOWUNHUKO8. AHAIU3 c60O0OHBIX KOICOAHUL GLINOTHEH MEMO-
00M HeTUHEeUHbIX HOPMATLHBIX popm. Paccuumanvl ghopmul u cxeremmuvie Kpugbie Korebauuti pomopa.

Knwuesvie cnosa: pomop, wapukonoOWunHux, Koiebanus, Heiunelinvle HopManbhble hopmbl, CKe-
JlemHuble Kpusble.

HEJIIHIMHA TUHAMIKA POTOPA 3 KOHCOJIbHO 3AKPIIIJIEHAM JUCKOM
HA PAJIAJIBHO-YIIOPHUX HTAPUKOIIIAIITAITHUKAX

C.B. ®ijginkoBcbKHid, 1011., K.T.H.,
XapkiBcbKHUil HANIOHAJILHUIT ABTOMOOLILHO-T0POKHiii yHIBepcUTeT

Anomayia. Ompumano mamemamuyy mMooenb HeiHIUHUX KOAUBAHb POMOpA HA padianbHO-YNOPHUX
WapuKOniOWUNHUKAX. /[JUCK 3aKPInIeHOo Ha KOHCOAbHOMY Kinyi éana. Ilpocunu 6ana o0Ho2o nopsaoky i3
NPYACHUMU Oedopmayiamu RIOWUNHUKIE. AHANI3 GIIbHUX KONUBAHb GUKOHAHO MEMOOOM HENIHIUHUX
Hopmanvrux gopm. Pospaxosano gpopmu i cxenemni kpugi koauams.

Knrouosi cnosa: pomop, wapukoniowuniux, KOIUeanHs, HeiHIUHI HOPMATbHI (POPMU, CKeLemHi KPUGL.

Introduction caused by clearances between the balls and rac-
es, and the nonlinear dependence of defor-
mations on contact forces. Nonlinear analysis of

rotors on ball-bearings with clearances are in-

Analysis of nonlinear dynamics of machines
allows predicting destructive oscillations in

conditions, which are safe from the point of
view of the linear model of the system, and due
to more precise definition to reduce their materi-
als consumption and terms of design. Practical-
ly, all vehicles contain rotors supported by non-
linear bearings. Nonlinearity of ball-bearings is

vestigated in articles [1,2,3]. Closing of the radi-
al internal clearance in ball-bearings causes
shock loads and excessive vibrations. In order to
reduce them, axial preload of ball bearing are
used. Nonlinear dynamics of such rotors is in-
vestigated in papers [4, 5].
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In the majority of works, the oscillations of ro-
tors in which one disk is in the middle between
the supports are considered, and oscillations are
caused by unbalance or bearings defects. In such
models, the deformed shaft center line is ap-
proximated by the harmonic functions as a rule.
In many machines the rotor resting on axial pre-
loaded angular contact ball-bearings has a disk
on the console end, and the bearings are mount-
ed on the vibrating basis. Using such a model it
is possible to provide the rotors of helicopter
turbines which are used as engines of dump
trucks, or electric motors with impellers of
pumps which are used in other vehicles.

Problem formulation

Influence of vibration of the basis on nonlinear
dynamics of a rotor, which has a disk on console
part of a shaft, supported by ball-bearings is in-
sufficient investigated. Therefore the problems
of creation of mathematical model and devel-
opment of technique to research oscillations of a
rotor on axial preloaded angular contact ball-
bearings, and also the analysis of dynamics of a
rotor when the frequency of its rotation is in fre-
quency band of vibration of the basis are solved.

Equations of rotor oscillations

For the rotor of such a structure it is difficult to
apply harmonic functions, therefore we use the
finite element method for approximation of a
deformed shaft. The design model of a rotor is
presented in fig. 1. Finite elements approximate
the sites of a shaft of a constant section. Disks
and supports are placed in nodes. Numbers of
nodal sections are denoted in fig. 1 by digits 1-5.
We consider the forces and the moments of
forces of inertia of a disk, and also the contact
forces arising in bearings as boundary condi-
tions in the corresponding nodes.

Free oscillations of a shaft of constant section
are described by the following equations [6]
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where [ and F — are the second moment of area
and the area of the shaft, respectively, £ and p —
are Young’s modulus and the mass density of
the shaft, respectively.
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Fig. 1. Finite elements of a rotor and nodes on
the ends of elements (1-5)

Coordinate axes are directed, as it is shown in
Fig. 1. Generalized coordinates which are the
components of a vector of nodal displacements
of a node 7 are the following sequence u;; =u

i,x°

Ujr = ei,y’ Uiz =U;ys Uy = 0., us=u;,. In-

terpolation polynoms of finite element are the
functions of a bending line of a beam at single
movements of nodal sections [7]
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where / is the element length, C is the coordinate
along an element axis. Deflections of finite
element between nodes i,i+1 are determined

by polynoms
u, =N, u;; +N,

ealin TN sUiy  + N, glty 5,

u, = N ju;;+ N,

e

Ui Nostp 3+ N, gty 4.(3)

Values u;, depend only on time, because the
shaft is not deformed along a rotation axis.

The equations of oscillations of a shaft are ob-
tained by Galerkin's method at simultaneous
approximation of both the equations and bound-
ary conditions [8]

JWeRodO+ jWeerr =0, 4)
(6] r



ABTOMOOGMNBLHLIA TPaHCNOPT, Bbin. 38, 2016

where R, is a residual of the solution of the
equation; Ry is a residual in boundary condi-

tions; W, and W, are the weight functions in the
area and on border, respectively; e is a number
of finite element. As weight functions in this
method we take interpolation polynoms
W,=N,.

If expressions (1), (2) and (3) substituted into
the first integral (4) we receive the following
integrals longwise of an element
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Carrying out in (5) integration by parts for
terms, which containing derivatives on coordi-
nate {, we receive
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where [K,] is a stiffness matrix of finite ele-

ment. Carrying out in (5) integration for terms
with derivatives on time we receive
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where [M,] is a matrix of mass of finite ele-
ment. The components of lines and columns of
matrixes corresponding to movement u_will be
zero because the shaft is not deformed along a
rotation axis, except a diagonal component of a
matrix of masses which is equal to the mass of
finite element.

The first boundary condition on the end of a
shaft with a disk is equality of the bending mo-
ment to the moment of forces of inertia of a disk
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where /; and [, are the diametrical and polar
moments of inertia of a disk, respectively, Q is
an angular speed of rotor. If expressions (2), (3),
(8) and =0 substituted into the second inte-
gral (4) we receive an additive to a matrix of
masses [M ] and a gyroscopic matrix [G,] for
degrees of freedom of the corresponding node
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The second boundary condition on the end of a
shaft with a disk is equality of lateral force to
force of inertia of a disk
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where m, is the mass of a disk. If expressions
(2), (3), (11) and £ =0 substituted into the se-

cond integral (4), we receive an additive to a
matrix of masses [M,,

=0
=Mty Uy Uiz Upg] -

If the disk is fixed on a shaft with eccentricity a,
then equations (11) must change so



ABTOMOOGMNBLHLIA TPaHCNOPT, Bbin. 38, 2016

ou, o%u, )
EI +my——=| —myaQd” cosQr =0,
oc’ o .,

ou, 6214}, 5 .
— | —mead”sinQr=0.
ot
=0
(13)
If expressions (2), (3), (13) and £ =0 substitut-

ed into the second integral (4) we receive a
right-hand vector of the equations of oscillations
{H,(Q,¢)} which is caused by a disk unbalance

besides the matrix [M ml]

{H, (1)} = myaQ?[cosQr 0 sinQr 0] . (14)

For the node which is fixed in the bearing,
boundary conditions on axes x, y are

o’u o’u
[EI - 1 [EI = J ~P (0 )=0,
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where P ;and P,

storing forces which are received in paper [9]. If
expressions (2), (3), (15) and £=0, in case of
the left node of an element, or £ =/, in case of

are functions of bearing re-

the right node of an element, substituted into the
second integral (4) we receive a vector function
of the bearing restoring forces
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If the rotor is mounted on the vibrating base, the

vector of kinematic excitation of oscillations is
added on the right side of equation [10]

tHy (o.0))=

where [M] is a matrix of masses, {4y (o,2)} is a

~[M Ry (w,0)}, (17)

vector of vibration accelerations of support,

o is the angular frequency of vibration of sup-
port. Damping forces are concentrated in bear-
ings. Therefore the vector of damping forces has
the same structure as the vector {K,(U)}. In
this paper we accept model of viscous damping,
then coefficients of damping matrix [C] placed
on its diagonal in the same lines as similar com-
ponent of the vector {K(U)}. Assembling the

matrixes which received on formulas (6), (7),
(9), (10), (12) and vectors (14), (16), (17) we
receive the equation of oscillations.

0+ [ahuj+[clo i+ [k]u) +
+HKn(U)j={Hp(Q.0)}+{Hy (o,

Analysis of free oscillations of a rotor

o P

The equation of free oscillations without damp-
ing has a form

M0 G0+ KN+ @) =0 19

To analyse free oscillations, we use the method
of nonlinear normal modes, which allows to
transform the analysis of finite degree of free-
doms system to the analysis of single degree of
freedom oscillator [9, 11].

Multiply (19) by [M ]_] and write the vector of

generalized velocities {V/}= {U } we receive the
first order system of equations

ilelri+ Ik ful+ K ()=0. 20)

We write all phase coordinates as the functions
of one pair of phase coordinates which can be
chosen arbitrary [11]

U P(p,
{ }z{ (p q)}' oD
V] 9.9
where p is displacement and ¢ = p is velocity.
We can express the components of vector func-

tions {P(p,q)} = [p] yees DN ]T and

10(p.q)}=[q,»-..qy ] in the form of a Taylor
series:
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P (P.a)=9,,p+9,,4+9,,p7 +
+9,4Pq+9,5q" + 9,60 +
+9,70°4+9,5P9" + 9,50,
q, (paQ) = 8N+n,]p + 8N+n,2q + 8N+n,3p2 +
+ONnaPq + 8N+n,5q2 + 8N+n,6p3 + (22)
+ 8N+n,7p2q + 8N+n,8pq2 + 8N+n,9q3 )

where n=1,...,J-1,J +1,...,N are numbers of de-
gree of freedoms, J is number of the chosen
basic generalized coordinate, p=p,, g=q,.

For determination of coefficients of power series
(22) we take derivatives of components of vec-
tor functions (21):

. op,(p.q) . op,(p.q) .
b (0.q)= P, (p Q)p+ P, (p Q)q’
op oq
. oq,(p.q) . 0q,(p.q) .
g,(pq)= q"a(p 1) 5, 00.a) o)
)2 O

We can express a component of any line of a

vector {V}z {U } in a formula (20) as a function

of the chosen pair of phase coordinates. Taking
into account series (22) we can write this func-
tion in the form:

N
l.'in (pJ’qJ): _ZG;,mqm -
m=1

N N
_ZK;,mpm _ZK;,m (pp}\pp)m .

m=1 m=l1

24)

At the same time this function is the left side of
the second formula (23). If expression (24) sub-
stituted into (23) the following equations are
obtained

p.(p.a)=q,(p.q)=
a ) a n Py . )
_op.(p Q)q+ . (p q)uj( )
op oq
q,(p.q)=ii,(p.q)=
aq,\p, 0q,(p.q) .. . (25
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Gathering terms of like powers in p and ¢ we
receive system of algebraic equations for defini-
tion of coefficients 8, ,, [11].

We substitute the calculated coefficients 3, ,
into that equation of system (20) which phase
coordinates are chosen as p and g. Executing
transformations we receive one differential
equation of the movement on the chosen vibra-
tion mode:

ﬁ+Blp+sz+B3p2 +B4pp+35p2 + (26)
+B,p’ +B,p*p+Bypp® + By p’ =0.

The equation (26) is solved by method of har-
monious balance.

Results of numerical researches

Rotor parameters are as follows: L =0.34 m is a
shaft length; / = 0.06 m is a length of the console
end; d; = 0.025 m is a diameter of the console
end of a shaft; d, = 0.025 m is a diameter of a
shaft between supports; £ =2.1-10"Pa and
p=0.3; m = 5.0 kg, I,=0.1kgm?’,
L=02kgm’ f,=QR2n=50Hz is a rotation
frequency of a rotor. The standard angular con-
tact ball-bearing parameters are as follows:
a.=15° is contact angle; R, =27.525 mm is the
radius of outer race; R; = 16.000 mm is the radius
of inner race; Rg = 5.930 mm is the race radius of
curvature; dz=11.510 mm is diameter of a ball;
Ng=7 is number of balls; E=2,1-10" Pa;
n=0,3.

Frequencies of transverse oscillations of the lin-
carized system are 70,54 Hz, 110,63 Hz,
196,22 Hz and 202,11 Hz. Frequency of longi-
tudinal oscillations of the linearized system is

101,70 Hz. Backbone curves of a rotor are
shown in fig. 2.
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Fig. 2. Backbone curves of a rotor

The system has soft characteristics. Curves 1
and 2 correspond to oscillations in the funda-
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mental mode. With a bigger frequency the
curved shaft axle rotates in the direction of shaft
rotation, and with a smaller frequency in oppo-
site direction. Curves 3 and 4 correspond to sim-
ilar oscillations in the second mode.

The fundamental mode of an elastic shaft axle at
transverse oscillations when frequency is near
110 Hz is shown in fig. 3 (corresponds to curve
2 in fig. 2).

03

z
!
L
Fig. 3. Fundamental mode of shaft oscillations

At oscillations in the fundamental mode the
shaft spindles are from the opposite sides from
an axis of bearings. The mode of an elastic shaft
axle when frequency is near 202 Hz is shown in
fig. 4 (corresponds to curve 4 in fig. 2). In this
case the shaft spindles are on the same side from
an axis of bearings.
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Fig. 4. Second mode of shaft oscillations

Conclusions

Oscillations of a rotor supported by the preloaded
angular contact ball bearings are investigated. The
disk is fixed on the console end of a shaft. Back-
bone curves and non-linear normal modes by
Shaw and Pierre are obtained. The system has

soft characteristics. Resonant oscillations can oc-
cur throughout the whole frequency range below
the principal resonance frequency.
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