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Annotation. Problem. The demand for lightweight, durable, and efficient automobile and agricultural
machinery structures requires advanced design methods. Topology optimization offers a solution by
optimizing material distribution, but its application to complex structures is challenging due to varying
loads and constraints. This study focuses on formulating the topology optimization problem to enhance
structural efficiency and performance. Purpose. The primary goal of this paper is to contribute to the
advancement of the scientific foundation of topology structural optimization, with a particular focus on
tackling the complex optimization challenges encountered in automobile and agricultural machinery
design. Methodology. Mathematical programming and modeling play a crucial role as foundational
tools in the formulation of topology structural optimization problems within the automobile and agri-
cultural machinery industry. Together, these tools facilitate the development of optimized structural
designs that are not only lightweight and cost-effective but also capable of withstanding the demanding
operational environments of agricultural equipment and automobiles. Results. This paper provides a
short review and analysis of the current state of topology structural optimization. It presents both the
classical variational formulation and the finite element formulation of the topology optimization prob-
lem. The study specifically addresses the problem of minimizing structural mass under stress con-
straints. The specific highlights are made for formulating the problem of topology optimization of agri-
cultural machinery mechanical structures. The theory is applicable both for agricultural machinery and
automobiles. Originality. This work focuses on the advancement of optimal design theory specifically
tailored to address unique challenges in the design of automobile and agricultural machinery structures.
To meet these needs, the study develops optimization approaches that integrate the specific mechanical,
functional, and economic requirements of automobiles and agricultural equipment. Practical meaning.
The practical value of this research lies in its adaptation of existing topology structural optimization
problem formulations to address the specific challenges and requirements of the automobile and agri-
cultural machinery industry. This adaptation ensures that the optimization solutions are not only math-
ematically sound but also practically viable, enabling the design of robust, efficient, and cost-effective
heavy machinery components.

Key words: topology optimization; agricultural machinery; automobile; FEM; SIMP-method; stress
constraints; weight minimum.

Introduction This category includes a wide range of tools,

Light weight designs are desirable in many industrial ~ rom simple hand and power tools to complex

applications. Decreasing the structural mass has
several immediate results, such as improved
performance and reduced fuel consumption which in
turn gives reduced emissions and an increased range.
A lighter design also gives the possibility to increase
payload.  Agricultural machinery refers to
mechanical equipment and structures used in
farming and other agricultural practices.

machines like tractors and the implements they
operate or tow. Such machinery plays a vital role
in both organic and conventional farming.

Since the rise of mechanized agriculture, these
machines have become essential to global food
production.

Agricultural machinery is also considered a
part of the broader field of agricultural
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automation, which encompasses more advanced
technologies such as digital tools and robotic
systems [1]. While agricultural robots are capable
of automating all three main stages of farming-
diagnosis, decision-making, and execution-
traditional ~ motorized equipment  mainly
automates the execution stage, with the first two
stages typically carried out by humans through
observation and experience [1].

Analysis of publications

The first steps towards what today is called
topology optimization were made in the mid-
1960s, when a number of papers on optimization
of truss structures were published. The first
practical implementation of optimization in the
form of point-wise material or voids on a fixed
finite element mesh, in order to obtain an
optimized shape, was performed by Bendsoe and
Kikuchi in 1988. The concept of topology
optimization that is common today, i.e.,
penalization of stiffness for intermediate design
variable values in order to achieve a design with
only solid material and voids, was introduced by
Bendsoe in 1989 and it was later named SIMP,
Solid Isotropic Material with Penalization, by
Rozvany. The word topology optimization
originates from the Greek word topos which
means landscape or place.

From the wvery beginning, topology
optimization has been synonymous with finding
the stiffest topology, given a limited amount of
material. Such a problem is formulated as
minimizing the compliance
Clx,7) =1/2f(x,7)Tu ; the lower the
compliance, the higher the stiffness for the loads
f(x,r). This traditional minimum compliance
formulation has gained its popularity much
because the compliance is a convex function
when K (x) depends linearly on x, which makes
it computationally efficient.

Purpose and Tasks

The primary goal of this paper is to contribute to
the advancement of the scientific foundation of
topology structural optimization, with a
particular focus on tackling the complex
optimization  challenges  encountered in
automobile and agricultural machinery design.
This study aims to develop and refine
optimization methodologies that address these
specific challenges, ensuring that the resulting
structures are not only lightweight and cost-

effective but also robust enough to meet the
demanding  functional and  operational
requirements of agricultural equipment.

Methodology

Mathematical programming and modeling play a
crucial role as foundational tools in the
formulation of topology structural optimization
problems within the automobile and agricultural
machinery industry. These methodologies enable
the precise definition and analysis of complex
optimization challenges by providing a structured
framework for incorporating various design
constraints,  operational  requirements, and
performance objectives. In the context of
agricultural machinery, mathematical
programming helps to account for several specific
factors, while modeling provides a detailed
representation of the structural behavior under
real-world conditions. Together, these tools
facilitate the development of optimized structural
designs that are not only lightweight and cost-
effective but also capable of withstanding the
demanding  operational  environments  of
agricultural equipment.

Results

This paper provides a short review and analysis
of the current state of topology structural
optimization. It presents both the classical
variational formulation and the finite element
(FE) formulation of the topology optimization
problem. The study specifically addresses the
problem of minimizing structural mass under
stress constraints. Several challenges associated
with stress-constrained topology optimization are
discussed. The specific highlights are made for

formulating the  problem of topology
optimization ~ of  agricultural ~ machinery
mechanical structures.

Difference in  Structural Optimization

Problems

Structural optimization is usually divided into
three main areas: size, shape and topology
optimization. In size and shape optimization, an
existing design is parameterized by, usually, a
moderate number of design variables, and finding
an optimized design often means that the end of
the design chain is reached.

That is, the optimized design constitutes the
design as it will be manufactured. In size
optimization, the design variables can control
parameters such as the cross-sectional area of a
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beam or the thickness of a plate and a fixed FE-
mesh is used. In shape optimization, the variables
influence the shape of the discretized structure by
modifying the shape of the elements, e.g., using
pre-defined shapes parameterized using spline
functions.  Sizing, shape, and topology
optimization problems focus on different facets
of structural design. In sizing optimization, the
objective might involve determining the optimal
thickness distribution of a linearly elastic plate or
the ideal cross-sectional areas of truss members.

This process seeks to minimize or maximize a
physical property — such as mean compliance
(external work), peak stress, or deflection — while
adhering to equilibrium  conditions and
constraints on both state and design variables.
Here, the design variable represents the plate's
thickness, while the state variable could
correspond to its deflection. A key characteristic
of sizing problems is that the design model's
domain and state variables are predetermined and
remain fixed throughout the optimization.

The shape optimization aims to determine the
optimal configuration of the domain itself,
making the domain shape the design variable.
Topology optimization, however, extends this
concept further by identifying critical features
such as the number, location, and shape of voids,
as well as the connectivity within the domain.

In contrast to size and shape optimization,
topology optimization does not start from a
known design and usually does not generate a
structural design that is ready for manufacturing;
instead, it generates a very first conceptual design
that needs to be interpreted into a geometric
model before its performance can be evaluated
with greater confidence. A design domain is
established to define the geometric constraints of
the structure, and this domain is discretized using
a finite element mesh. Each element within the
mesh is assigned a design variable that indicates
whether the element contains structural material
or represents a void. By adjusting these variables,
the structural connectivity evolves to transmit
applied loads to the supports in a way that
minimizes the objective function, while
satisfying the given constraints. This means that
the number of design variables in a topology
optimization problem is typically very large.
Compared to size and shape optimization,
topology optimization allows more freedom, as it
does not rely on an existing and typically non-
optimal design, and therefore topology
optimization allows for the greatest gain in
performance.

21
Formulation of problem of Topology
Optimization of Agricultural Machinery

Structures

The layout problem described below incorporates
various aspects of classical structural design optimi-
zation. The goal of topology optimization is to de-
termine the optimal structural layout within a de-
fined region. The only known parameters in the
problem are the applied loads, potential support lo-
cations, the total volume of material available, and
possibly additional design constraints, such as the
position and size of predefined holes or solid re-
gions. The physical dimensions, shape, and connec-
tivity of the structure are initially unknown. Instead
of using standard parametric functions, the topol-
ogy, shape, and size of the structure are represented
by a set of spatially distributed functions defined
over a fixed design domain. These functions serve
as a parameterization of the continuum'’s stiffness
tensor, and selecting an appropriate parameteriza-
tion is key to formulating the topology optimization
problem correctly [2], [3].

Structural optimization is a general term involving
several techniques used to optimize the design of a
load carrying structure. The design variables x in-
fluence the design of the structure under considera-
tion and these are updated in an automated way such
that the objective function g, (x) is minimized and
the constraints are satisfied. A general structural op-
timization problem can be written in the following
form:

min X
i, go(x),

subject to g;(x) < g,, i=1,..,cand x\ <x, <
x¥, e = 1,...,m, where the ¢ constraints state that
the functions g;(x) need to return a value not
greater than the upper limits g; and the m design
variables have the lower and upper bounds x! and
xg, respectively.

The functions g;(x), j = 0, ..., c can be calculated
using the finite element method (FEM) for linearly
elastic structures. A nested formulation is used,
meaning that the nodal displacement vector 1 € R",
where n is the number of degrees of freedom of the
model, is found as the solution of the state equation:

K@i = f@&,),

where the stiffness matrix K(%) € R™™" is influ-
enced by the design variables and f (x; r) 2

Rnf(ic’, 7) € R™ is the force vector, which may be
influenced by the design variables and which may
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also be controlled by some external vector 7. This
means that the stiffness matrix needs to be inverti-
ble, so that the displacements become implicit func-
tions of X, ie.,

i=1& =K@ f& D).
Minimum compliance design

In general, the optimal shape design is formulated
as a material distribution problem. The set-up is
analogous to the formulations for sizing problems
for discrete and continuum structures [2], [3]. It is
important to note that such problem type has a large
scale from a computational point of view, both in
state and in the design variables. That’s why, the
first problems treated in this area usually employed
the simplest type of design problem formulation in
terms of objective and constraint, namely designing
for minimum compliance (maximum global stiff-
ness) under simple resource constraints. As men-
tioned in [2], this is also conceptually a natural start-
ing point for this exposition as its solution reflects
many of the fundamental issues in the field. Based
on discussion above, the formulation of problem of
topology optimization (Fig. 1) of agricultural ma-
chinery structures is proposed to be presented in the
similar way. Consider a mechanical element as a
body occupying a domain Q™#t which is a part of a
larger reference domain Q in R? or R2.

A

e
&S

3 , \\ /

Fig. 1. The generalized shape design problem in
the formulation as the optimal material
distribution search  within a two-
dimensional domain: 1 — design point;
2 — point without material; 3 — point with
fixed material

The reference domain € is chosen so as to allow
for a definition of the applied loads and boundary
conditions and the reference domain is
sometimes called the ground structure, in parallel
with terminology used in truss topology design.
Referring to the reference domain Q can be
defined as the optimal design problem as the
problem of finding the optimal choice of stiffness

tensor E;j(x) which is a variable over the
domain.
Introducing the energy bilinear form (i.e., the in-
ternal virtual work of an elastic body at the equilib-
rium u and for an arbitrary virtual displacement v:

a(u,v) = [ Eija()e;jWeq ) dQ,

. . . 1(ou;  9uj
where linearized strains ;;(w) = = (<= + —) and
2 6x] ax;

the load linear form:
l(w) = [, fudQ+ fFT tuds,

the minimum compliance (maximum global stiff-
ness) problem takes the form:

min [(u
UEU,E OF

1)
such that ag(u,v) = l(v) forallv € U, E € Eyy.
The equilibrium equation is expressed in its weak,
variational form, where U represents the space of
kinematically admissible displacement fields. The
body forces are denoted by f, and t denotes the
boundary tractions applied on the traction boundary
I'y € T = 0Q. The subscript E indicates that the bi-
linear form ae depends on the design variables, spe-
cifically through the stiffness distribution.

In equation (1), E,4 denotes the set of admissible
stiffness tensors relevant to the design problem. In
the context of topology optimization, E,; may, for
instance, consist of all stiffness tensors that match
the properties of a prescribed isotropic material
within the (unknown) material region Q™%t | and
zero stiffness elsewhere. A resource constraint is
then imposed via the wvolume condition

fnmat 1dQ < V. The different possible definitions

of E,4 will be discussed in the next section.

To solve problems of the type described by equa-
tion (1) using computational methods, a common
approach-adopted throughout this monograph - is to
discretize the problem using the finite element
method. It is important to recognize that two pri-
mary fields are involved in equation (1): the dis-
placement field u and the stiffness distribution E.
When the same finite element mesh is used for both
fields, and the stiffness E is assumed to be constant
within each element, the discrete form of equation
(1) can be written as follows:

.
min f T,
u,Ee

()

such that K(E,)% = f for E, € Eg,
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where u is the displacement vector, f is the load
vector.

The stiffness matrix K depends on the stiffness
E,. in element e, numbered as e = 1, ...,N, and K
can be written in the form:

K= 22’:1 K, (Ee);

where K, is the (global level) element stiffness ma-
trix.

Design parametrization

In structural topology design, the objective is to de-
termine the optimal spatial distribution of a given
isotropic material-that is, to identify which regions
in the design domain should contain material and
which should remain void (i.e., without material).
This leads to a geometric representation of the
structure analogous to a black-and-white image,
where "black" indicates material presence and
"white" represents void. In the discrete setting, this
corresponds to a black-and-white raster representa-
tion, with "pixels" (in 2D) or "voxels" (in 3D) de-
fined by the finite element mesh [2], [3].

Restricting our design to a fixed reference do-
main £, the task becomes finding the optimal mate-
rial subset Q™2 c (. For the optimization problem
involving an isotropic material as described above,
this formulation implies that the admissible set E, 4
of stiffness tensors consists of those tensors that sat-
isfy the following condition:

Eijiq = 1gmatEfy, 3)

1if x € omat
0if x € Q/Qmat’
and [, 1gmar dQ = Vol(Q™*) S V.

The final inequality represents a constraint on the
available material volume, denoted by V, ensuring
that the minimum compliance design is achieved
within a fixed material budget. The tensor E{’jkl re-

fers to the stiffness tensor of the prescribed isotropic
material. The notation E;j, € L*(Q) is used to
specify the appropriate function space for the stiff-
ness distribution in the domain.

This definition of the admissible set E,, results
in a spatially distributed, discrete-valued design
problem-essentially a 0-1 optimization problem
where each point is either material or void.

A widely adopted approach to solving this inher-
ently discrete problem is to relax the binary design
variables into continuous ones and introduce a pe-
nalization strategy to drive the solution toward

where 1gmat = {

discrete (0-1) values. In this framework, the design
problem over the fixed domain is reformulated as a
sizing optimization problem, where the stiffness ma-
trix is made to depend continuously on a design func-
tion interpreted as a material density field. This den-
sity function becomes the central design variable.

The objective is to obtain designs that consist al-
most entirely of regions of full material or complete
void, effectively minimizing the presence of inter-
mediate density values. These intermediate values
are penalized to mimic the behavior of traditional
continuous approximations to 0-1 optimization
problems.

One particularly effective and widely used ap-
proach is the penalized, proportional stiffness
model, known as the SIMP model (Solid Isotropic
Material with Penalization):

Eijia () = p()PEDy, (4)

wherep > 1, [, p(x)dQ<V,0<px) <1,x€
Q.

In this context, the "density"” p(x) serves as the de-
sign function, and E{’jkl represents the stiffness ten-

sor of a specified isotropic material. The term "den-
sity" is used because the total volume of the struc-
ture is evaluated as [, p(x) dQ, with p(x) € [0,1]
indicating the proportion of material present at each
point in the domain.

The density function p(x) is used to interpolate be-
tween void (with material properties equal to zero)
and solid material (with full material properties
given by Ey,:

Eiji(p =0) =0,
Eija(p = 1) = E

This means that if the final design yields density
values of either zero or one at every point in the do-
main, it corresponds to a black-and-white design in
which the performance has been evaluated using a
physically accurate model. In the SIMP approach, a
penalization exponent p > 1 is chosen so that inter-
mediate density values are disfavored-i.e., they re-
sult in significantly lower stiffness relative to their
material cost (volume contribution). In other words,
selecting a penalization factor p > 1 makes interme-
diate densities "uneconomical" in the optimization,
thus discouraging their presence in the final design.

This penalization effect is achieved implicitly,
without the need for an explicit penalty term. For
problems where the volume constraint is active, em-
pirical evidence shows that choosing a sufficiently
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large value of p (typically p > 3) leads to designs
that are nearly binary (0-1). Moreover, it has been
proven in the discrete minimum compliance prob-
lem that for sufficiently large ppp, a globally opti-
mal solution with 0-1 characteristics exists-pro-
vided that the volume constraint allows for such a
design [4], [5].

The SIMP interpolation scheme forms the founda-
tion for most of the computational results presented in
the first part of this monograph. The original 0-1 opti-
mization problem is defined over a fixed reference do-
main, and with SIMP interpolation, the topology opti-
mization problem effectively becomes a standard siz-
ing problem posed on a fixed domain.

The physical interpretability of the SIMP
model has frequently been a subject of debate-
specifically, whether the interpolation used in
SIMP can correspond to a real material, such as a
composite, that exhibits the same behavior. It is
important to emphasize that the comparison be-
tween interpolation schemes like SIMP and mi-
cromechanical models is primarily valuable for
gaining insight into the nature and implications of
such computational methods.

When a numerical scheme successfully produces
black-and-white (0-1) designs, the physical mean-
ing of intermediate ("grey") densities becomes less
critical and can, to some extent, be disregarded.
However, the issue of physical relevance remains
pertinent, particularly because many computational
methods based on interpolation often result in de-
signs that still contain intermediate density regions.
Furthermore, the ability to physically realize all fea-
sible designs becomes especially important when
interpreting the results of an optimization process
that has been prematurely terminated before full
convergence to a 0-1 design. In such cases, under-
standing the physical implications of intermediate
density values is essential for evaluating the relia-
bility and manufacturability of the resulting design.

Implementation of the optimality criteria
method

The essential components of the optimality criteria
method for implementing the material distribution
approach in topology design have been outlined
above. These include the fundamental parametriza-
tion of the design through the relationship between
design variables and stiffness via an appropriate in-
terpolation scheme, as well as the update procedure
for the density values based on optimality condi-
tions. This update relies on solving the equilibrium
equations, which is typically carried out using the
finite element method.

The direct topology design method, employing
the material distribution approach, involves

numerically determining the globally optimal mate-
rial density distribution pp, which serves as the de-
sign variable. When an interpolation scheme that ef-
fectively penalizes intermediate densities is used,
the method aims to produce a 0-1 (black-and-white)
design as the final outcome.

Thus, the optimality criteria method for identify-
ing the optimal topology of a structure made from a
single isotropic material comprises the following
steps:

Pre-processing of geometry and loading

o Select an appropriate reference domain (often
referred to as the ground structure) that ac-
commodates the definition of surface trac-
tions, fixed boundary conditions, and other
relevant boundary data.

e Identify the regions within the reference do-
main that are subject to optimization, distin-
guishing them from areas that should remain
either entirely solid or void throughout the de-
sign process.

e Generate a finite element mesh over the
ground structure. The mesh should be suffi-
ciently refined to provide an adequate resolu-
tion for a bitmap-like representation of the
structure. Additionally, it must support the
specification of predefined solid or void re-
gions by allowing fixed values of the design
variables in those areas. Importantly, this
mesh remains fixed throughout the optimiza-
tion process.

o Define finite element spaces for both the dis-
placement field and the design variable field,
treating them as independent fields within the
optimization formulation.

Optimization

Compute the optimal distribution of the design
variable p over the reference domain. The optimiza-
tion is carried out using displacement-based finite
element analysis combined with an optimality crite-
ria update scheme for the material density. The
structure of the algorithm is as follows: initialize the
design, typically by assigning a homogeneous ma-
terial distribution across the designable domain.

The iterative part of the algorithm then proceeds:

e Finite Element Analysis: for the current den-
sity distribution, compute the displacement
and strain fields using the finite element
method.

e Evaluate Compliance: calculate the compli-
ance of the current design. If the improvement
in compliance compared to the previous itera-
tion is negligible, terminate the optimization.
For more precise analysis, continue iterating
until the necessary optimality conditions are
satisfied.
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e Update the Density Field: update the design
variable p based on the optimality criteria.
This step includes solving an inner iteration
loop to determine the Lagrange multiplier A
that enforces the volume constraint.

o Repeat the iteration loop until convergence.

In cases where certain parts of the structure are
predefined as either solid or void, the update of the
design variables should be restricted only to the re-
gions designated for redesign or reinforcement.

Post-processing of results

The optimal material distribution obtained from the
algorithm can be interpreted as defining a structural
shape-potentially suitable for conversion into a CAD
representation. As part of the method, it is essential at
the outset to select an appropriate interpolation
scheme, such as the SIMP method. Notably, when
SIMP is used with a sufficiently high penalization ex-
ponent pp, the resulting designs tend to be well-de-
fined, consisting predominantly of regions with either
full material or void, with minimal presence of inter-
mediate material density (i.e., minimal "grey" areas).
It is important to emphasize that the described algo-
rithm can be implemented on any type of finite ele-
ment mesh and for any reference domain Q (i.e.,
ground structure). This provides the method with con-
siderable flexibility in terms of specifying boundary
conditions, loading scenarios, and non-design regions
of the structure. However, in practice, rectangular do-
mains (in 2D) or box-shaped domains (in 3D), along
with regular meshes composed of squares or cubes,
are often used. These choices simplify the implemen-
tation and can significantly accelerate the computa-
tional performance of the analysis.

On programming complexity

The procedure outlined above does not require
substantial programming effort to solve the compli-
ance-based topology optimization problem. For in-
stance, in the case of a rectangular design domain
discretized using square finite elements, with Q4 in-
terpolation for displacements and element-wise
constant material densities, a complete implementa-
tion-including finite element analysis and visualiza-
tion of the resulting design-can be accomplished in
the well-known 99-line MATLAB code.

This compact implementation even incorporates
a filtering technique to mitigate common issues
such as checkerboarding and mesh dependency,
which are inherent to the topology optimization
problem. An overview of the computational flow
for structural topology design using the material
distribution method is illustrated in Figure 2.

Stress constraints

Topology optimization is traditionally used as a
tool for finding optimal load paths with respect to

stiffness [5], [6]. However, from an engineering
point-of-view, few applications have maximum
stiffness as the main design criterion. Usually, the
design needs to have sufficient stiffness, so that
buckling is avoided or the eigenfrequency is above
some critical value, and the main design criteria in-
clude stress and fatigue requirements and mass min-
imization. Incorporation of stress constraints in the
topology optimization problems is an extremely im-
port topic [7], [8]. However, several challenges
must be overcome in order to solve the problem ef-
ficiently. Solving of stress constrained continuum
topology design problems is covered in [9], [10].

For the 0-1 formulation of the topology design
problem a stress constraint is well-defined, but
when a material of intermediate density is intro-
duced, the form of the stress constraint is not a priori
given [11], [12].

Start
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Finite Element Analysis

!

Sensitivity Analysis
(linearization)

h J

Low-Pass Filtering

h

Structural Optimization

h

Design Variables Update

Converged

Postprocessor —
Results Plotting

Fig. 2. Computational flow of the structural
topology optimization
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A stress criterion for the SIMP model should
maintain simplicity-similar to the stiffness-den-
sity interpolation-and preserve the isotropic na-
ture of the material's stiffness properties within
the stress formulation as well [13], [14]. For the
model to remain physically meaningful, it is also
reasonable that the stress constraint reflects prin-
ciples consistent with microstructural behavior.
This consideration leads to the adoption of a
stress constraint in the SIMP framework (with pe-
nalization exponent p) based on the von Mises
equivalent stress g, [15], [16]:

©)

This constraint accounts for the reduction in
strength characteristic of a porous medium, where
average (macroscopic) stresses are distributed
across the local microstructure. As a consequence,
"local™ stresses can remain finite and non-zero even
as the material density approaches zero. This behav-
ior effectively reduces the allowable stress domain
by a factor of pP. Notably, the same penalization ex-
ponent pp is typically used for both the stiffness in-
terpolation and the stress constraint. Choosing a dif-
ferent exponent is inconsistent with the underlying
physical interpretation and, in particular, using an
exponent smaller than pp may lead to non-physical
outcomes, such as the artificial removal of material,
as discussed in [17], [18].

The classical formulation of the stress-con-
strained topology optimization problem [19], [20]
aims to find the minimum-weight structure that sat-
isfies the stress constraints and remains in elastic
equilibrium under the applied external loads. This
leads to a design problem of the form:

oym < pPay, p>0.

N
2 VePe ,1?17 = fv (O-e)vM < ,050'1 (6)

e=1

min
p

if p>0, 0<ppin<pe<1l e=1,..,N,
where, for instance, the stress is evaluated at the
central node of each finite element.

Conclusions

The article examines the key stages in the devel-
opment of the theory of structural topology optimi-
zation, presenting both the classical variational and
finite element formulations of the topology optimi-
zation problem. It discusses the concept and spe-
cific features of implementing the SIMP method for
solving such problems.

The formulation of the topology optimization
problem is presented as the minimization of the
structure's mass while considering  stress

constraints. A range of challenges associated with
introducing these constraints into the optimization
problem is addressed. Methods for incorporating
stress constraints into topology optimization prob-
lems are also analyzed.

Thus, the review and analysis of the current state
of the theory of structural topology optimization
conducted in this article demonstrate that this scien-
tific field is both relevant and rapidly evolving. For
this reason, employing such a modern design tool as
topology optimization to address the challenges of
creating and improving mechanical structures for
agricultural machinery is considered a pressing is-
sue.

The article proposes a formulation of the topol-
ogy optimization problem for mechanical structures
in agricultural machinery, taking into account com-
plex strength constraints, including criteria for al-
lowable stresses.

Conflict of interests
The authors declare that there is no conflict of
interests regarding the publication of this paper.

References

1. The State of Food and Agriculture (2022) Leveraging
agricultural automation for transforming agrifood sys-
tems. Rome: Food and Agriculture Organization of

the United Nations (FAO).
2022. doi:10.4060/cb947%n. ISBN 978-92-5-
136043-9.

2. Haftka, R. T., & Gurdal, Z. (2012). Elements of struc-
tural optimization (Vol. 11). Springer Science & Busi-
ness Media. https://doi.org/10.1007/978-94-011-
2550-5

3. Kayabekir, A.E., Bekdas, G., Nigdeli, S.M. (2021).
Developments on Metaheuristic-Based Optimization
in Structural Engineering. In: Nigdeli, S.M., Bekdas,
G., Kayabekir, AE., Yucel, M. (eds) Advances in
Structural Engineering—Optimization. Studies in Sys-
tems, Decision and Control, vol 326. Springer, Cham.
https://doi.org/10.1007/978-3-030-61848-3_1

4. Holmberg, E., Torstenfelt, B. & Klarbring, A. Stress
constrained topology optimization. Struct Multidisc
Optim 48, 33-47 (2013).
https://doi.org/10.1007/s00158-012-0880-7

5. Polajnar, M., Kosel, F. & Drazumeric, R. Structural
optimization using global stress-deviation objective
function via the level-set method. Struct Multidisc Op-
tim 55, 91-104 (2017).
https://doi.org/10.1007/s00158-016-1475-5

6. Giraldo-Londofio, O., Russ, J.B., Aguil6, M.A. et al.
(2022). Limiting the first principal stress in topology
optimization: a local and consistent approach. Struct
Multidisc Optim 65, 254
https://doi.org/10.1007/s00158-022-03320-y

7. Dixiong, Y., Hongliang L., Weisheng Z., Shi L.
(2018). Stress-constrained topology optimization
based on maximum stress measures. Computers &

Automobile transport, Vol. 56, 2025


https://doi.org/10.4060/cb9479en
https://doi.org/10.4060/cb9479en
https://doi.org/10.4060/cb9479en
doi:10.4060/cb9479en
https://en.wikipedia.org/wiki/Special:BookSources/978-92-5-136043-9
https://en.wikipedia.org/wiki/Special:BookSources/978-92-5-136043-9
https://doi.org/10.1007/978-94-011-2550-5
https://doi.org/10.1007/978-94-011-2550-5
https://doi.org/10.1007/978-3-030-61848-3_1
https://doi.org/10.1007/s00158-012-0880-7
https://doi.org/10.1007/s00158-016-1475-5
https://doi.org/10.1007/s00158-022-03320-y

MexaHi4Ha iHXXeHepisa

27

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Structures, Vol. 198, 23-39
https://doi.org/10.1016/j.compstruc.2018.01.008
Amstutz, Samuel & Novotny, A.A. (2010). Topologi-
cal optimization of structures subject to VVon Mises
stress constraints. Structural and Multidisciplinary
Optimization. 41, 407-420.
https://doi.org/10.1007/s00158-009-0425-x

Guo, Xu & Zhang, Weisheng & Wang, Michael &
Wei, Peng. (2011). Stress-related topology optimiza-
tion via level set approach. Computer Methods in Ap-
plied Mechanics and Engineering - COMPUT
METHOD APPL MECH ENG. 200, 3439-3452.
https://doi.org/10.1016/j.cma.2011.08.016

Kocvara, Michal & Stingl, Michael. (2012). Solving
stress constrained problems in topology and material
optimization. Structural and Multidisciplinary Opti-
mization. 46, 1-15. https://doi.org/10.1007/s00158-
012-0762-z

Zhai, X., Chen, F. & Wu, J. (2021). Alternating opti-
mization of design and stress for stress-constrained to-
pology optimization. Struct Multidisc Optim 64,
2323-2342 https://doi.org/10.1007/s00158-021-
02985-1

Le, Chau & Norato, Julian & Bruns, Tyler & Ha,
Christopher & Tortorelli, Daniel. (2010). Stress-based
topology optimization for continua. Structural and
Multidisciplinary ~ Optimization. 41.  605-620.
https://doi.org/10.1007/s00158-009-0440-y

Paris, José¢ & Navarrina, F. & Colominas, Ignasi &
Casteleiro, M. (2010). Block aggregation of stress
constraints in topology optimization of structures. Ad-
vances in Engineering Software. 41. 433-441.
https://doi.org/10.1016/j.advengsoft.2009.03.006

E. Holmberg, B. Torstenfelt, A. Klarbring (2013).
Stress constrained topology optimization. Structural
and Multidisciplinary Optimization, 48(1):33-47.
https://doi.org/10.1007/s00158-012-0880-7

R. Picelli, S. Townsend, C. Brampton, J. Norato, H.A.
Kim (2018). Stress-based shape and topology optimi-
zation with the level set method. Computer Methods
in Applied Mechanics and Engineering, Vol. 329, 1-
23, https://doi.org/10.1016/j.cma.2017.09.001

de Leon, D. M., Alexandersen, J., Jun, J. S., & Sig-
mund, O. (2015). Stress-constrained topology optimi-
zation for compliant mechanism design. Structural
and Multidisciplinary Optimization, 52(5), 929-943.
https://doi.org/10.1007/s00158-015-1279-z

De Leon, D.M., Gongalves, J.F. & de Souza, C.E.
(2020). Stress-based topology optimization of compli-
ant mechanisms design using geometrical and mate-
rial nonlinearities. Struct Multidisc Optim 62, 231-
248 https://doi.org/10.1007/s00158-019-02484-4

G. A. Silva, A. T. Beck, O. Sigmund (2019). Stress-
constrained topology optimization considering uni-
form manufacturing uncertainties. Computer Methods
in Applied Mechanics and Engineering, 344, 512-537.
https://doi.org/10.1016/j.cma.2018.10.020

Bruggi, Matteo & Duysinx, Pierre. (2012). Topology
optimization for minimum weight with compliance
and stress  constraints. Structural and

Multidisciplinary ~ Optimization. 46, 369-384.
https://doi.org/10.1007/s00158-012-0759-7

20. Collet, M., Bruggi, M. & Duysinx, P. (2017). Topol-
ogy optimization for minimum weight with compli-
ance and simplified nominal stress constraints for fa-
tigue resistance. Struct Multidisc Optim 55, 839855

https://doi.org/10.1007/s00158-016-1510-6

Tovt Bohdan * PhD, Associate Professor of the Depart-
ment of Higher Mathematics, Physics and General Engi-
neering,

e-mail: btovtua@gmail.com ,

Phone: +38(068) 680-79-31,

ORCID: https://orcid.org/0009-0000-7670-8898
Leontiev Dmytro 2 Doctor of Technical Sciences, Pro-
fessor of the Department of Automobiles named after
A.B. Gredeskul,

e-mail: dima.a3alij@gmail.com ,

Phone: +38(095) 903-68-88,

ORCID: https://orcid.org/0000-0003-4255-6317

Malyi Viktor 2 PhD Student of the Department of Auto-
mobiles named after A.B. Gredeskul,

e-mail: victormaly@outlook.com ,

Phone: +38(093) 452-95-50,

ORCID: https://orcid.org/0009-0002-7800-9163

!Dnipro State Agrarian and Economic University, Serhii
Efremov str., 25, Dnipro, Ukraine, 49009

2Kharkiv National Automobile and Highway University,
Yaroslava Mudrogo str., 25, Kharkiv, Ukraine, 61002

IlocTanoBka 3agadi ToOmoOJIOTiYHOI omTHMI3amii
KOHCTPYKUIiil aBTOMOOWIIB Ta ciibcbkorocnoaap-
CbKOI TeXHIiKHI

Anomauyin. Ilpoonema. Ilonum na nezki, miyni ma
eghexmueHi KOHCMPYKYIT agmomodinie ma ciibCbKo2o-
CHOOAPCHLKOI MEXHIKU BUMA2AE 3ACTNOCYBAHHS CYUAC-
HUX Memoodie npoekmysarHs. Tononroziuna onmumiza-
Yisi KOHCMPYKYIU NPONOHYE HOBULL NIOXIO 8 NPOeKny-
BAHHI 30 PAXYHOK ORMUMI3ayii po3nooiny mamepiany,
npome ii 3acmMocy8antsi 00 CKIAOHUX KOHCIPYKYIL €
HeNnpoCmuM 3a80AHHAM Yepes3 GapiamueHicms HaABaH-
maoicenb ma obmedicens. Lle docnioocenns 3o0cepe-
00ICEHO HA hOpMYNIOBAHHI 3a0ayi MONONIOIYHOL ONn-
mumizayii' 3 Memoro niosuLeHHs: eqoeKmueHOCmi KOH-
cmpykyiil. Mema. Ocrnoenoro memoio yiei pobomu €
6HECOK Y DO3BUMOK HAYKOBUX OCHO8 MONOJO2IYHOL
CMPYKMYpPHOI onmumizayii 3 aKyeHmom Ha 6upi-
WeHHS ONMUMI3AYITHUX 3a0aY, WO BUHUKAIOMb ) NPO-
eKMYBAaHHI a8mMoMo0iNi6 ma CLIbCbKO2OCHOO0APCHKOL
mexuiky. Memoouxa. Mamemamuune npocpamy-
BAHHSL MA MOOETOBAHHS Gi0I2PAOMb KIHOU08Y POJIb K
OCHOGHI THCMPYMEeHmU Y (hOPMYIFOEAHHKI 3a0ay Mono-
JA02IYHOT CMPYKMYPHOI ONMUMI3AYIL € 2ay3i A6momo-
6i1e0y0ysants CiIbCbKO2OCNOO0APCbKOi mexHiKu. Y
NOEOHAKHI Yi IHCMPYMEHMU CRPUAIOMb PO3POOYL ON-
MUMIZ308AHUX KOHCIMPYKYIU, SKI € 1e2KUMU, eKOHOMI-
YHO BUCIOHUMU MA 30AMHUMU UMPUMYEAMU CKIAAOHI
VYMOBU eKCHIYamayii CiibCbK020CH00apCbKo2o 001a0-
HawHs ma asmomooinie. Pesyromamu. Y cmammi
npeocmasneHo KOPOMmKUll 02180 i aHali3 CydacHo2o
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CMAaHy Monoa02iuHoi cmpykmyproi onmumizayii. Po-
3210aI0MbCsl K Kaacuune eapiayitine Qopmymo-
6aHHs, MAK [ POPMYIIOBAHHA 3A0aYl MONONOSIYHOL
onmumizayii' y 6uensdi CKIHYeHHO-eIeMEeHMHO20 Nio-
x00y. Ocobausa ysaea npuodiisnemscs 3a0aui MiHIMi-
3ayii macu KOHCmpyKyii nio Hanpyoicennamu. Ocooau-
8ull akyenm 3po0ONeHo Ha PopMYmTosanHi 3a0aui mo-
NON02IYHOI onmuMi3ayii MEexXauiyHux KOHCMPYKYIll
cinbcbroeocnooapevkoi mexuiku. Teopis npudamua
011 NPOEKMYBAHHs SIK CLIbCbKO2OCNOOAPCHKOL mex-
Hiku max i agmomo6inie. Haykoea nosuszna. /Joci-
00ICEeHHsL 30CePeOICeHO HA PO3GUMKY Meopii onmuma-
JILHO20 NPOEKMYBAHHS, CReYIAIbHO A0anmosanol oJis
BUPIUEHHS YHIKAIbHUX GUKIIUKIG Y NPOEKMYBAHHI KOH-
CMPYKYIL asmomoOinie ma CLibCbKO20CHOO0aPCbKOL
mexHixu. /[ 3a00801eHHs 6UMO2 Y OOCAIONHCEHHI PO-
3p00ONIeHO NioXoo0u 00 onmumizayii, sIKi IHmespyoms
cneyughiuni mexaniuni, QYHKYIOHAIbHI Ma eKOHOMIUHI
suUMO2U 00 ABMOMODLNI6 MA CLILCLKO2OCNO0APCLKO20
obnaonanus. Ipakmuuna 3nauumicmes. Ipaxmuuna
YIHHICTb Yb0O20 OOCTONCEHHS NONA2AE 8 A0AnmMayii
iCHYIOUUX (hOpMYTIIOBAHb 3a0ai MONONIOSIYHOL CMPYK-
mypHoi onmumizayii 00 cneyugivHux 6UKIUKIE | 6U-
MO2 asmoMoOinie ma CilbCbKO2OCHOOAPCHKOT mex-
uixu. I adoanmayis eapanmye, wo onmumizayiiuni pi-
wienHst 6y0ymo He Jiue MamemMamuyHo 00IpyHmMoea-
HUMU, aie 1l NPAKMUYHO 3ACTOCOGHUMY, 00360A104U
cmeoprogamu MiyHi, eqoeKmueHi ma eKOHOMIYHO GU2I-
OHI KOMNOHEHMU BUCOKOHABAHMANCEHOT MEXHIKUL.

Knrwouoei cnosa: mononociuna onmumizayis, cinbCo-
Koeocnoodapcvka mextixa, asmomooine, MCK; SIMP;
00MedICeHHsl 3a HaNPYHCEHHAM, MIHIMYM BA2U.
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