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Annotation. Problem. The demand for lightweight, durable, and efficient automobile and agricultural 
machinery structures requires advanced design methods. Topology optimization offers a solution by 
optimizing material distribution, but its application to complex structures is challenging due to varying 
loads and constraints. This study focuses on formulating the topology optimization problem to enhance 
structural efficiency and performance. Purpose. The primary goal of this paper is to contribute to the 
advancement of the scientific foundation of topology structural optimization, with a particular focus on 
tackling the complex optimization challenges encountered in automobile and agricultural machinery 
design. Methodology. Mathematical programming and modeling play a crucial role as foundational 
tools in the formulation of topology structural optimization problems within the automobile and agri-
cultural machinery industry. Together, these tools facilitate the development of optimized structural 
designs that are not only lightweight and cost-effective but also capable of withstanding the demanding 
operational environments of agricultural equipment and automobiles. Results. This paper provides a 
short review and analysis of the current state of topology structural optimization. It presents both the 
classical variational formulation and the finite element formulation of the topology optimization prob-
lem. The study specifically addresses the problem of minimizing structural mass under stress con-
straints. The specific highlights are made for formulating the problem of topology optimization of agri-
cultural machinery mechanical structures. The theory is applicable both for agricultural machinery and 
automobiles. Originality. This work focuses on the advancement of optimal design theory specifically 
tailored to address unique challenges in the design of automobile and agricultural machinery structures. 
To meet these needs, the study develops optimization approaches that integrate the specific mechanical, 
functional, and economic requirements of automobiles and agricultural equipment. Practical meaning. 
The practical value of this research lies in its adaptation of existing topology structural optimization 
problem formulations to address the specific challenges and requirements of the automobile and agri-
cultural machinery industry. This adaptation ensures that the optimization solutions are not only math-
ematically sound but also practically viable, enabling the design of robust, efficient, and cost-effective 
heavy machinery components. 

Key words: topology optimization; agricultural machinery; automobile; FEM; SIMP-method; stress 
constraints; weight minimum. 

 
Introduction 

Light weight designs are desirable in many industrial 
applications. Decreasing the structural mass has 
several immediate results, such as improved 
performance and reduced fuel consumption which in 
turn gives reduced emissions and an increased range. 
A lighter design also gives the possibility to increase 
payload. Agricultural machinery refers to 
mechanical equipment and structures used in 
farming and other agricultural practices.  

This category includes a wide range of tools, 
from simple hand and power tools to complex 
machines like tractors and the implements they 
operate or tow. Such machinery plays a vital role 
in both organic and conventional farming.  

Since the rise of mechanized agriculture, these 
machines have become essential to global food 
production. 

Agricultural machinery is also considered a 
part of the broader field of agricultural 
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automation, which encompasses more advanced 
technologies such as digital tools and robotic 
systems [1]. While agricultural robots are capable 
of automating all three main stages of farming-
diagnosis, decision-making, and execution-
traditional motorized equipment mainly 
automates the execution stage, with the first two 
stages typically carried out by humans through 
observation and experience [1]. 

 
Analysis of publications 

The first steps towards what today is called 
topology optimization were made in the mid-
1960s, when a number of papers on optimization 
of truss structures were published. The first 
practical implementation of optimization in the 
form of point-wise material or voids on a fixed 
finite element mesh, in order to obtain an 
optimized shape, was performed by Bendsoe and 
Kikuchi in 1988. The concept of topology 
optimization that is common today, i.e., 
penalization of stiffness for intermediate design 
variable values in order to achieve a design with 
only solid material and voids, was introduced by 
Bendsoe in 1989 and it was later named SIMP, 
Solid Isotropic Material with Penalization, by 
Rozvany. The word topology optimization 
originates from the Greek word topos which 
means landscape or place.  

From the very beginning, topology 
optimization has been synonymous with finding 
the stiffest topology, given a limited amount of 
material. Such a problem is formulated as 
minimizing the compliance  
𝐶𝐶(𝑥𝑥, 𝑟𝑟) = 1 2⁄ 𝑓𝑓(𝑥𝑥, 𝑟𝑟)𝑇𝑇𝑢𝑢 ; the lower the 
compliance, the higher the stiffness for the loads 
𝑓𝑓(𝑥𝑥, 𝑟𝑟).  This traditional minimum compliance 
formulation has gained its popularity much 
because the compliance is a convex function 
when 𝐾𝐾(𝑥𝑥) depends linearly on 𝑥𝑥, which makes 
it computationally efficient. 

 
Purpose and Tasks 

The primary goal of this paper is to contribute to 
the advancement of the scientific foundation of 
topology structural optimization, with a 
particular focus on tackling the complex 
optimization challenges encountered in 
automobile and agricultural machinery design.  

This study aims to develop and refine 
optimization methodologies that address these 
specific challenges, ensuring that the resulting 
structures are not only lightweight and cost-

effective but also robust enough to meet the 
demanding functional and operational 
requirements of agricultural equipment. 

 
Methodology 

Mathematical programming and modeling play a 
crucial role as foundational tools in the 
formulation of topology structural optimization 
problems within the automobile and agricultural 
machinery industry. These methodologies enable 
the precise definition and analysis of complex 
optimization challenges by providing a structured 
framework for incorporating various design 
constraints, operational requirements, and 
performance objectives. In the context of 
agricultural machinery, mathematical 
programming helps to account for several specific 
factors, while modeling provides a detailed 
representation of the structural behavior under 
real-world conditions. Together, these tools 
facilitate the development of optimized structural 
designs that are not only lightweight and cost-
effective but also capable of withstanding the 
demanding operational environments of 
agricultural equipment. 

 
Results 

This paper provides a short review and analysis 
of the current state of topology structural 
optimization. It presents both the classical 
variational formulation and the finite element 
(FE) formulation of the topology optimization 
problem. The study specifically addresses the 
problem of minimizing structural mass under 
stress constraints. Several challenges associated 
with stress-constrained topology optimization are 
discussed. The specific highlights are made for 
formulating the problem of topology 
optimization of agricultural machinery 
mechanical structures. 
 
Difference in Structural Optimization 
Problems 

Structural optimization is usually divided into 
three main areas: size, shape and topology 
optimization. In size and shape optimization, an 
existing design is parameterized by, usually, a 
moderate number of design variables, and finding 
an optimized design often means that the end of 
the design chain is reached.  

That is, the optimized design constitutes the 
design as it will be manufactured. In size 
optimization, the design variables can control 
parameters such as the cross-sectional area of a 
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beam or the thickness of a plate and a fixed FE-
mesh is used. In shape optimization, the variables 
influence the shape of the discretized structure by 
modifying the shape of the elements, e.g., using 
pre-defined shapes parameterized using spline 
functions. Sizing, shape, and topology 
optimization problems focus on different facets 
of structural design. In sizing optimization, the 
objective might involve determining the optimal 
thickness distribution of a linearly elastic plate or 
the ideal cross-sectional areas of truss members.  

This process seeks to minimize or maximize a 
physical property – such as mean compliance 
(external work), peak stress, or deflection – while 
adhering to equilibrium conditions and 
constraints on both state and design variables. 
Here, the design variable represents the plate's 
thickness, while the state variable could 
correspond to its deflection. A key characteristic 
of sizing problems is that the design model's 
domain and state variables are predetermined and 
remain fixed throughout the optimization. 

The shape optimization aims to determine the 
optimal configuration of the domain itself, 
making the domain shape the design variable. 
Topology optimization, however, extends this 
concept further by identifying critical features 
such as the number, location, and shape of voids, 
as well as the connectivity within the domain. 

In contrast to size and shape optimization, 
topology optimization does not start from a 
known design and usually does not generate a 
structural design that is ready for manufacturing; 
instead, it generates a very first conceptual design 
that needs to be interpreted into a geometric 
model before its performance can be evaluated 
with greater confidence. A design domain is 
established to define the geometric constraints of 
the structure, and this domain is discretized using 
a finite element mesh. Each element within the 
mesh is assigned a design variable that indicates 
whether the element contains structural material 
or represents a void. By adjusting these variables, 
the structural connectivity evolves to transmit 
applied loads to the supports in a way that 
minimizes the objective function, while 
satisfying the given constraints. This means that 
the number of design variables in a topology 
optimization problem is typically very large. 
Compared to size and shape optimization, 
topology optimization allows more freedom, as it 
does not rely on an existing and typically non-
optimal design, and therefore topology 
optimization allows for the greatest gain in 
performance. 

Formulation of problem of Topology 
Optimization of Agricultural Machinery 
Structures 

The layout problem described below incorporates 
various aspects of classical structural design optimi-
zation. The goal of topology optimization is to de-
termine the optimal structural layout within a de-
fined region. The only known parameters in the 
problem are the applied loads, potential support lo-
cations, the total volume of material available, and 
possibly additional design constraints, such as the 
position and size of predefined holes or solid re-
gions. The physical dimensions, shape, and connec-
tivity of the structure are initially unknown. Instead 
of using standard parametric functions, the topol-
ogy, shape, and size of the structure are represented 
by a set of spatially distributed functions defined 
over a fixed design domain. These functions serve 
as a parameterization of the continuum's stiffness 
tensor, and selecting an appropriate parameteriza-
tion is key to formulating the topology optimization 
problem correctly [2], [3]. 
Structural optimization is a general term involving 
several techniques used to optimize the design of a 
load carrying structure. The design variables 𝑥𝑥 in-
fluence the design of the structure under considera-
tion and these are updated in an automated way such 
that the objective function 𝑔𝑔0(𝑥𝑥) is minimized and 
the constraints are satisfied. A general structural op-
timization problem can be written in the following 
form: 

 
min
𝑥𝑥∈𝑅𝑅𝑚𝑚

𝑔𝑔0(𝑥𝑥),  
 

subject to 𝑔𝑔𝑖𝑖(𝑥𝑥) ≤ 𝑔𝑔𝚤𝚤� , 𝑖𝑖 = 1, … , 𝑐𝑐 and 𝑥𝑥𝑒𝑒𝑙𝑙 ≤ 𝑥𝑥𝑒𝑒 ≤
𝑥𝑥𝑒𝑒𝑢𝑢 , 𝑒𝑒 = 1, … ,𝑚𝑚, where the 𝑐𝑐 constraints state that 
the functions 𝑔𝑔𝑖𝑖(𝑥𝑥) need to return a value not 
greater than the upper limits 𝑔𝑔𝑖𝑖 and the 𝑚𝑚 design 
variables have the lower and upper bounds 𝑥𝑥𝑒𝑒𝑙𝑙  and 
𝑥𝑥𝑒𝑒𝑢𝑢 , respectively.  
The functions 𝑔𝑔𝑗𝑗(𝑥𝑥), 𝑗𝑗 = 0, … , 𝑐𝑐 can be calculated 
using the finite element method (FEM) for linearly 
elastic structures. A nested formulation is used, 
meaning that the nodal displacement vector 𝑢𝑢�⃗ ∈ 𝑅𝑅𝑛𝑛 , 
where 𝑛𝑛 is the number of degrees of freedom of the 
model, is found as the solution of the state equation: 
 

𝐾𝐾��⃗ (�⃗�𝑥)𝑢𝑢�⃗ = 𝑓𝑓(�⃗�𝑥, 𝑟𝑟),  
 

where the stiffness matrix 𝐾𝐾��⃗ (�⃗�𝑥) ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 is influ-
enced by the design variables and f (x; r) 2 
Rn𝑓𝑓(�⃗�𝑥, 𝑟𝑟) ∈ 𝑅𝑅𝑛𝑛  is the force vector, which may be 
influenced by the design variables and which may 
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also be controlled by some external vector 𝑟𝑟. This 
means that the stiffness matrix needs to be inverti-
ble, so that the displacements become implicit func-
tions of �⃗�𝑥, i.e.,  
𝑢𝑢�⃗ = 𝑢𝑢�⃗ (�⃗�𝑥) = 𝐾𝐾��⃗ (�⃗�𝑥)−1𝑓𝑓(�⃗�𝑥, 𝑟𝑟). 

 
Minimum compliance design 

In general, the optimal shape design is formulated 
as a material distribution problem. The set-up is 
analogous to the formulations for sizing problems 
for discrete and continuum structures [2], [3]. It is 
important to note that such problem type has a large 
scale from a computational point of view, both in 
state and in the design variables. That’s why, the 
first problems treated in this area usually employed 
the simplest type of design problem formulation in 
terms of objective and constraint, namely designing 
for minimum compliance (maximum global stiff-
ness) under simple resource constraints. As men-
tioned in [2], this is also conceptually a natural start-
ing point for this exposition as its solution reflects 
many of the fundamental issues in the field. Based 
on discussion above, the formulation of problem of 
topology optimization (Fig. 1) of agricultural ma-
chinery structures is proposed to be presented in the 
similar way. Consider a mechanical element as a 
body occupying a domain Ω𝑚𝑚𝑚𝑚𝑚𝑚  which is a part of a 
larger reference domain Ω in R2 or R2. 

 

 
Fig. 1. The generalized shape design problem in 

the formulation as the optimal material 
distribution search within a two-
dimensional domain: 1 – design point; 
2 – point without material; 3 – point with 
fixed material 

 
The reference domain Ω is chosen so as to allow 
for a definition of the applied loads and boundary 
conditions and the reference domain is 
sometimes called the ground structure, in parallel 
with terminology used in truss topology design. 
Referring to the reference domain Ω  can be 
defined as the optimal design problem as the 
problem of finding the optimal choice of stiffness 

tensor 𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙(𝑥𝑥)  which is a variable over the 
domain. 

Introducing the energy bilinear form (i.e., the in-
ternal virtual work of an elastic body at the equilib-
rium 𝑢𝑢 and for an arbitrary virtual displacement 𝑣𝑣: 

 
𝑎𝑎(𝑢𝑢, 𝑣𝑣) = ∫ 𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙(𝑥𝑥)𝜀𝜀𝑖𝑖𝑗𝑗(𝑢𝑢)𝜀𝜀𝑖𝑖𝑙𝑙(𝑣𝑣)𝑑𝑑ΩΩ ,  

 
where linearized strains 𝜀𝜀𝑖𝑖𝑗𝑗(𝑢𝑢) = 1

2
�𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
� and 

the load linear form: 
 

𝑙𝑙(𝑢𝑢) = ∫ 𝑓𝑓𝑢𝑢 𝑑𝑑ΩΩ + ∫ 𝑡𝑡𝑢𝑢 𝑑𝑑sГ𝑇𝑇
,  

 
the minimum compliance (maximum global stiff-
ness) problem takes the form: 

 
min
𝑢𝑢∈𝑈𝑈,𝐸𝐸

𝑙𝑙(𝑢𝑢), (1) 
 

such that 𝑎𝑎𝐸𝐸(𝑢𝑢, 𝑣𝑣) = 𝑙𝑙(𝑣𝑣) for all 𝑣𝑣 ∈ 𝑈𝑈, 𝐸𝐸 ∈ 𝐸𝐸𝑚𝑚𝑎𝑎. 
The equilibrium equation is expressed in its weak, 
variational form, where U represents the space of 
kinematically admissible displacement fields. The 
body forces are denoted by f, and t denotes the 
boundary tractions applied on the traction boundary 
Г𝑇𝑇 ⊂ Г ≡ 𝜕𝜕Ω. The subscript E indicates that the bi-
linear form aE depends on the design variables, spe-
cifically through the stiffness distribution. 

In equation (1), 𝐸𝐸𝑚𝑚𝑎𝑎 denotes the set of admissible 
stiffness tensors relevant to the design problem. In 
the context of topology optimization, 𝐸𝐸𝑚𝑚𝑎𝑎 may, for 
instance, consist of all stiffness tensors that match 
the properties of a prescribed isotropic material 
within the (unknown) material region Ω𝑚𝑚𝑚𝑚𝑚𝑚  , and 
zero stiffness elsewhere. A resource constraint is 
then imposed via the volume condition 
∫ 1𝑑𝑑ΩΩ𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑉𝑉. The different possible definitions 
of 𝐸𝐸𝑚𝑚𝑎𝑎 will be discussed in the next section. 

To solve problems of the type described by equa-
tion (1) using computational methods, a common 
approach-adopted throughout this monograph - is to 
discretize the problem using the finite element 
method. It is important to recognize that two pri-
mary fields are involved in equation (1): the dis-
placement field 𝑢𝑢 and the stiffness distribution E. 
When the same finite element mesh is used for both 
fields, and the stiffness E is assumed to be constant 
within each element, the discrete form of equation 
(1) can be written as follows: 

 
min
𝑢𝑢,𝐸𝐸𝑒𝑒

𝑓𝑓𝑇𝑇𝑢𝑢�⃗ , (2) 
 

such that 𝐾𝐾(𝐸𝐸𝑒𝑒)𝑢𝑢�⃗ = 𝑓𝑓 for 𝐸𝐸𝑒𝑒 ∈ 𝐸𝐸𝑚𝑚𝑎𝑎, 
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where 𝑢𝑢�⃗  is the displacement vector, 𝑓𝑓 is the load 
vector. 

The stiffness matrix 𝐾𝐾 depends on the stiffness 
𝐸𝐸𝑒𝑒 in element 𝑒𝑒, numbered as 𝑒𝑒 = 1, … ,𝑁𝑁, and 𝐾𝐾 
can be written in the form: 

 
𝐾𝐾 = ∑ 𝐾𝐾𝑒𝑒(𝐸𝐸𝑒𝑒)𝑁𝑁

𝑒𝑒=1 ,  
 

where 𝐾𝐾𝑒𝑒 is the (global level) element stiffness ma-
trix. 

 
Design parametrization 

In structural topology design, the objective is to de-
termine the optimal spatial distribution of a given 
isotropic material-that is, to identify which regions 
in the design domain should contain material and 
which should remain void (i.e., without material). 
This leads to a geometric representation of the 
structure analogous to a black-and-white image, 
where "black" indicates material presence and 
"white" represents void. In the discrete setting, this 
corresponds to a black-and-white raster representa-
tion, with "pixels" (in 2D) or "voxels" (in 3D) de-
fined by the finite element mesh [2], [3]. 

Restricting our design to a fixed reference do-
main Ω, the task becomes finding the optimal mate-
rial subset Ω𝑚𝑚𝑚𝑚𝑚𝑚 ⊂ Ω. For the optimization problem 
involving an isotropic material as described above, 
this formulation implies that the admissible set 𝐸𝐸𝑚𝑚𝑎𝑎 
of stiffness tensors consists of those tensors that sat-
isfy the following condition: 

 
𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙 = 1Ω𝑚𝑚𝑚𝑚𝑚𝑚𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙0 , (3) 

 

where 1Ω𝑚𝑚𝑚𝑚𝑚𝑚 = � 1 𝑖𝑖𝑓𝑓 𝑥𝑥 ∈ Ω𝑚𝑚𝑚𝑚𝑚𝑚

0 𝑖𝑖𝑓𝑓 𝑥𝑥 ∈ Ω Ω𝑚𝑚𝑚𝑚𝑚𝑚⁄ , 

and ∫ 1Ω𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑ΩΩ = 𝑉𝑉𝑉𝑉𝑙𝑙(Ω𝑚𝑚𝑚𝑚𝑚𝑚) ≤ 𝑉𝑉. 
The final inequality represents a constraint on the 

available material volume, denoted by V, ensuring 
that the minimum compliance design is achieved 
within a fixed material budget. The tensor 𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙0  re-
fers to the stiffness tensor of the prescribed isotropic 
material. The notation 𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙 ∈ 𝐿𝐿∞(Ω) is used to 
specify the appropriate function space for the stiff-
ness distribution in the domain. 

This definition of the admissible set 𝐸𝐸𝑚𝑚𝑎𝑎 results 
in a spatially distributed, discrete-valued design 
problem-essentially a 0-1 optimization problem 
where each point is either material or void. 

A widely adopted approach to solving this inher-
ently discrete problem is to relax the binary design 
variables into continuous ones and introduce a pe-
nalization strategy to drive the solution toward 

discrete (0-1) values. In this framework, the design 
problem over the fixed domain is reformulated as a 
sizing optimization problem, where the stiffness ma-
trix is made to depend continuously on a design func-
tion interpreted as a material density field. This den-
sity function becomes the central design variable. 

The objective is to obtain designs that consist al-
most entirely of regions of full material or complete 
void, effectively minimizing the presence of inter-
mediate density values. These intermediate values 
are penalized to mimic the behavior of traditional 
continuous approximations to 0-1 optimization 
problems. 

One particularly effective and widely used ap-
proach is the penalized, proportional stiffness 
model, known as the SIMP model (Solid Isotropic 
Material with Penalization): 
 
𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙(𝑥𝑥) = 𝜌𝜌(𝑥𝑥)𝑝𝑝𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙0 , (4) 

 
where 𝑝𝑝 > 1, ∫ 𝜌𝜌(𝑥𝑥) 𝑑𝑑ΩΩ ≤ 𝑉𝑉, 0 ≤ 𝜌𝜌(𝑥𝑥) ≤ 1, 𝑥𝑥 ∈
Ω. 
In this context, the "density" 𝜌𝜌(𝑥𝑥) serves as the de-
sign function, and 𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙0  represents the stiffness ten-
sor of a specified isotropic material. The term "den-
sity" is used because the total volume of the struc-
ture is evaluated as ∫ 𝜌𝜌(𝑥𝑥) 𝑑𝑑ΩΩ , with 𝜌𝜌(𝑥𝑥) ∈ [0,1] 
indicating the proportion of material present at each 
point in the domain.  
The density function 𝜌𝜌(𝑥𝑥) is used to interpolate be-
tween void (with material properties equal to zero) 
and solid material (with full material properties 
given by 𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙0 : 

 
𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙(𝜌𝜌 = 0) = 0,  
𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙(𝜌𝜌 = 1) = 𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙0 ,  

 
This means that if the final design yields density 
values of either zero or one at every point in the do-
main, it corresponds to a black-and-white design in 
which the performance has been evaluated using a 
physically accurate model. In the SIMP approach, a 
penalization exponent p > 1 is chosen so that inter-
mediate density values are disfavored-i.e., they re-
sult in significantly lower stiffness relative to their 
material cost (volume contribution). In other words, 
selecting a penalization factor p > 1 makes interme-
diate densities "uneconomical" in the optimization, 
thus discouraging their presence in the final design. 

This penalization effect is achieved implicitly, 
without the need for an explicit penalty term. For 
problems where the volume constraint is active, em-
pirical evidence shows that choosing a sufficiently 
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large value of p (typically p > 3) leads to designs 
that are nearly binary (0-1). Moreover, it has been 
proven in the discrete minimum compliance prob-
lem that for sufficiently large ppp, a globally opti-
mal solution with 0-1 characteristics exists-pro-
vided that the volume constraint allows for such a 
design [4], [5]. 

The SIMP interpolation scheme forms the founda-
tion for most of the computational results presented in 
the first part of this monograph. The original 0-1 opti-
mization problem is defined over a fixed reference do-
main, and with SIMP interpolation, the topology opti-
mization problem effectively becomes a standard siz-
ing problem posed on a fixed domain. 

The physical interpretability of the SIMP 
model has frequently been a subject of debate-
specifically, whether the interpolation used in 
SIMP can correspond to a real material, such as a 
composite, that exhibits the same behavior. It is 
important to emphasize that the comparison be-
tween interpolation schemes like SIMP and mi-
cromechanical models is primarily valuable for 
gaining insight into the nature and implications of 
such computational methods. 

When a numerical scheme successfully produces 
black-and-white (0-1) designs, the physical mean-
ing of intermediate ("grey") densities becomes less 
critical and can, to some extent, be disregarded. 
However, the issue of physical relevance remains 
pertinent, particularly because many computational 
methods based on interpolation often result in de-
signs that still contain intermediate density regions. 
Furthermore, the ability to physically realize all fea-
sible designs becomes especially important when 
interpreting the results of an optimization process 
that has been prematurely terminated before full 
convergence to a 0-1 design. In such cases, under-
standing the physical implications of intermediate 
density values is essential for evaluating the relia-
bility and manufacturability of the resulting design. 
 

Implementation of the optimality criteria 
method 

The essential components of the optimality criteria 
method for implementing the material distribution 
approach in topology design have been outlined 
above. These include the fundamental parametriza-
tion of the design through the relationship between 
design variables and stiffness via an appropriate in-
terpolation scheme, as well as the update procedure 
for the density values based on optimality condi-
tions. This update relies on solving the equilibrium 
equations, which is typically carried out using the 
finite element method. 

The direct topology design method, employing 
the material distribution approach, involves 

numerically determining the globally optimal mate-
rial density distribution ρρ, which serves as the de-
sign variable. When an interpolation scheme that ef-
fectively penalizes intermediate densities is used, 
the method aims to produce a 0-1 (black-and-white) 
design as the final outcome. 

Thus, the optimality criteria method for identify-
ing the optimal topology of a structure made from a 
single isotropic material comprises the following 
steps: 
Pre-processing of geometry and loading 
• Select an appropriate reference domain (often 

referred to as the ground structure) that ac-
commodates the definition of surface trac-
tions, fixed boundary conditions, and other 
relevant boundary data. 

• Identify the regions within the reference do-
main that are subject to optimization, distin-
guishing them from areas that should remain 
either entirely solid or void throughout the de-
sign process. 

• Generate a finite element mesh over the 
ground structure. The mesh should be suffi-
ciently refined to provide an adequate resolu-
tion for a bitmap-like representation of the 
structure. Additionally, it must support the 
specification of predefined solid or void re-
gions by allowing fixed values of the design 
variables in those areas. Importantly, this 
mesh remains fixed throughout the optimiza-
tion process. 

• Define finite element spaces for both the dis-
placement field and the design variable field, 
treating them as independent fields within the 
optimization formulation. 

Optimization 
Compute the optimal distribution of the design 

variable ρ over the reference domain. The optimiza-
tion is carried out using displacement-based finite 
element analysis combined with an optimality crite-
ria update scheme for the material density. The 
structure of the algorithm is as follows: initialize the 
design, typically by assigning a homogeneous ma-
terial distribution across the designable domain.  

The iterative part of the algorithm then proceeds: 
• Finite Element Analysis: for the current den-

sity distribution, compute the displacement 
and strain fields using the finite element 
method. 

• Evaluate Compliance: calculate the compli-
ance of the current design. If the improvement 
in compliance compared to the previous itera-
tion is negligible, terminate the optimization. 
For more precise analysis, continue iterating 
until the necessary optimality conditions are 
satisfied. 
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• Update the Density Field: update the design 
variable ρ based on the optimality criteria. 
This step includes solving an inner iteration 
loop to determine the Lagrange multiplier λ 
that enforces the volume constraint. 

• Repeat the iteration loop until convergence. 
In cases where certain parts of the structure are 

predefined as either solid or void, the update of the 
design variables should be restricted only to the re-
gions designated for redesign or reinforcement. 

Post-processing of results 
The optimal material distribution obtained from the 

algorithm can be interpreted as defining a structural 
shape-potentially suitable for conversion into a CAD 
representation. As part of the method, it is essential at 
the outset to select an appropriate interpolation 
scheme, such as the SIMP method. Notably, when 
SIMP is used with a sufficiently high penalization ex-
ponent pp, the resulting designs tend to be well-de-
fined, consisting predominantly of regions with either 
full material or void, with minimal presence of inter-
mediate material density (i.e., minimal "grey" areas). 
It is important to emphasize that the described algo-
rithm can be implemented on any type of finite ele-
ment mesh and for any reference domain Ω (i.e., 
ground structure). This provides the method with con-
siderable flexibility in terms of specifying boundary 
conditions, loading scenarios, and non-design regions 
of the structure. However, in practice, rectangular do-
mains (in 2D) or box-shaped domains (in 3D), along 
with regular meshes composed of squares or cubes, 
are often used. These choices simplify the implemen-
tation and can significantly accelerate the computa-
tional performance of the analysis. 

On programming complexity 
The procedure outlined above does not require 

substantial programming effort to solve the compli-
ance-based topology optimization problem. For in-
stance, in the case of a rectangular design domain 
discretized using square finite elements, with Q4 in-
terpolation for displacements and element-wise 
constant material densities, a complete implementa-
tion-including finite element analysis and visualiza-
tion of the resulting design-can be accomplished in 
the well-known 99-line MATLAB code.  

This compact implementation even incorporates 
a filtering technique to mitigate common issues 
such as checkerboarding and mesh dependency, 
which are inherent to the topology optimization 
problem. An overview of the computational flow 
for structural topology design using the material 
distribution method is illustrated in Figure 2. 

Stress constraints 
Topology optimization is traditionally used as a 

tool for finding optimal load paths with respect to 

stiffness [5], [6]. However, from an engineering 
point-of-view, few applications have maximum 
stiffness as the main design criterion. Usually, the 
design needs to have sufficient stiffness, so that 
buckling is avoided or the eigenfrequency is above 
some critical value, and the main design criteria in-
clude stress and fatigue requirements and mass min-
imization. Incorporation of stress constraints in the 
topology optimization problems is an extremely im-
port topic [7], [8]. However, several challenges 
must be overcome in order to solve the problem ef-
ficiently. Solving of stress constrained continuum 
topology design problems is covered in [9], [10]. 

For the 0-1 formulation of the topology design 
problem a stress constraint is well-defined, but 
when a material of intermediate density is intro-
duced, the form of the stress constraint is not a priori 
given [11], [12]. 

 
Fig. 2. Computational flow of the structural 

topology optimization 
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A stress criterion for the SIMP model should 
maintain simplicity-similar to the stiffness-den-
sity interpolation-and preserve the isotropic na-
ture of the material's stiffness properties within 
the stress formulation as well [13], [14]. For the 
model to remain physically meaningful, it is also 
reasonable that the stress constraint reflects prin-
ciples consistent with microstructural behavior. 
This consideration leads to the adoption of a 
stress constraint in the SIMP framework (with pe-
nalization exponent p) based on the von Mises 
equivalent stress 𝜎𝜎𝑣𝑣𝑣𝑣 [15], [16]: 

 
𝜎𝜎𝑣𝑣𝑣𝑣 ≤ 𝜌𝜌𝑝𝑝𝜎𝜎𝑙𝑙, 𝜌𝜌 > 0. (5) 

 
This constraint accounts for the reduction in 

strength characteristic of a porous medium, where 
average (macroscopic) stresses are distributed 
across the local microstructure. As a consequence, 
"local" stresses can remain finite and non-zero even 
as the material density approaches zero. This behav-
ior effectively reduces the allowable stress domain 
by a factor of ρp. Notably, the same penalization ex-
ponent pp is typically used for both the stiffness in-
terpolation and the stress constraint. Choosing a dif-
ferent exponent is inconsistent with the underlying 
physical interpretation and, in particular, using an 
exponent smaller than pp may lead to non-physical 
outcomes, such as the artificial removal of material, 
as discussed in [17], [18]. 

The classical formulation of the stress-con-
strained topology optimization problem [19], [20] 
aims to find the minimum-weight structure that sat-
isfies the stress constraints and remains in elastic 
equilibrium under the applied external loads. This 
leads to a design problem of the form: 

 

𝑚𝑚𝑖𝑖𝑛𝑛
𝜌𝜌 �𝑣𝑣𝑒𝑒𝜌𝜌𝑒𝑒

𝑁𝑁

𝑒𝑒=1

,𝐾𝐾��⃗ 𝑢𝑢�⃗ = 𝑓𝑓, (𝜎𝜎𝑒𝑒)𝑣𝑣𝑣𝑣 ≤ 𝜌𝜌𝑒𝑒
𝑝𝑝𝜎𝜎𝑙𝑙 (6) 

 
if 𝜌𝜌 > 0, 0 < 𝜌𝜌𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝜌𝜌𝑒𝑒 ≤ 1, 𝑒𝑒 = 1, … ,𝑁𝑁, 

where, for instance, the stress is evaluated at the 
central node of each finite element. 

 
Conclusions 

The article examines the key stages in the devel-
opment of the theory of structural topology optimi-
zation, presenting both the classical variational and 
finite element formulations of the topology optimi-
zation problem. It discusses the concept and spe-
cific features of implementing the SIMP method for 
solving such problems. 

The formulation of the topology optimization 
problem is presented as the minimization of the 
structure's mass while considering stress 

constraints. A range of challenges associated with 
introducing these constraints into the optimization 
problem is addressed. Methods for incorporating 
stress constraints into topology optimization prob-
lems are also analyzed.   

Thus, the review and analysis of the current state 
of the theory of structural topology optimization 
conducted in this article demonstrate that this scien-
tific field is both relevant and rapidly evolving. For 
this reason, employing such a modern design tool as 
topology optimization to address the challenges of 
creating and improving mechanical structures for 
agricultural machinery is considered a pressing is-
sue.   

The article proposes a formulation of the topol-
ogy optimization problem for mechanical structures 
in agricultural machinery, taking into account com-
plex strength constraints, including criteria for al-
lowable stresses. 
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Постановка задачі топологічної оптимізації 
конструкцій автомобілів та сільськогосподар-
ської техніки 

Анотація. Проблема. Попит на легкі, міцні та 
ефективні конструкції автомобілів та сільського-
сподарської техніки вимагає застосування сучас-
них методів проектування. Топологічна оптиміза-
ція конструкцій пропонує новий підхід в проекту-
ванні за рахунок оптимізації розподілу матеріалу, 
проте її застосування до складних конструкцій є 
непростим завданням через варіативність наван-
тажень та обмежень. Це дослідження зосере-
джено на формулюванні задачі топологічної оп-
тимізації з метою підвищення ефективності кон-
струкцій. Мета. Основною метою цієї роботи є 
внесок у розвиток наукових основ топологічної 
структурної оптимізації з акцентом на вирі-
шення оптимізаційних задач, що виникають у про-
ектуванні автомобілів та сільськогосподарської 
техніки. Методика. Математичне програму-
вання та моделювання відіграють ключову роль як 
основні інструменти у формулюванні задач топо-
логічної структурної оптимізації в галузі автомо-
білебудування сільськогосподарської техніки. У 
поєднанні ці інструменти сприяють розробці оп-
тимізованих конструкцій, які є легкими, економі-
чно вигідними та здатними витримувати складні 
умови експлуатації сільськогосподарського облад-
нання та автомобілів. Результати. У статті 
представлено короткий огляд і аналіз сучасного 
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стану топологічної структурної оптимізації. Ро-
зглядаються як класичне варіаційне формулю-
вання, так і формулювання задачі топологічної 
оптимізації у вигляді скінченно-елементного під-
ходу. Особлива увага приділяється задачі мінімі-
зації маси конструкції під напруженнями. Особли-
вий акцент зроблено на формулюванні задачі то-
пологічної оптимізації механічних конструкцій 
сільськогосподарської техніки. Теорія придатна 
для проектування як сільськогосподарської тех-
ніки так і автомобілів. Наукова новизна. Дослі-
дження зосереджено на розвитку теорії оптима-
льного проектування, спеціально адаптованої для 
вирішення унікальних викликів у проектуванні кон-
струкцій автомобілів та сільськогосподарської 
техніки. Для задоволення вимог у дослідженні ро-
зроблено підходи до оптимізації, які інтегрують 
специфічні механічні, функціональні та економічні 
вимоги до автомобілів та сільськогосподарського 
обладнання. Практична значимість. Практична 
цінність цього дослідження полягає в адаптації 
існуючих формулювань задач топологічної струк-
турної оптимізації до специфічних викликів і ви-
мог автомобілів та сільськогосподарської тех-
ніки. Ця адаптація гарантує, що оптимізаційні рі-
шення будуть не лише математично обґрунтова-
ними, але й практично застосовними, дозволяючи 
створювати міцні, ефективні та економічно вигі-
дні компоненти високонавантаженої техніки. 

Ключові слова: топологічна оптимізація; сільсь-
когосподарська техніка; автомобіль, МСК; SIMP; 
обмеження за напруженням; мінімум ваги. 
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