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Abstract. Problem. The article studies the change in the elastic limit and tensile strength of acrylic 
adhesive over time - from the maximum value (short-term strength) to the minimum (long-term strength 
limit). The development of deformations in samples under constant loads ranging from 0.2 to 0.85 of 
the destructive ones was experimentally studied. It is shown that at stresses below the long-term strength 
limit, the deformation curve includes two sections: instantaneous deformations and viscous 
deformations that develop over time. Destruction occurs due to the accumulation of damage (cracks, 
defects), and its speed depends on the stress level and the configuration of the adhesive joint. Purpose. 
The aim of this study is to establish the patterns of change in the yield strength and ultimate strength of 
acrylic adhesive over time under sustained loading, as well as to analyze the damage accumulation 
process in adhesive joints depending on stress level. Methodology. The experimental research involved 
testing acrylic adhesive specimens under constant loads ranging from 20% to 85% of their short-term 
(ultimate) strength. The development of deformations over time was observed, and the nature of failure 
was recorded. Results. It was found that under stresses below the long-term strength limit, the 
deformation curve consists of two distinct regions: instantaneous (elastic) deformation and time-
dependent (viscous) deformation. Failure occurs due to the progressive accumulation of micro-damage, 
including cracks and defects. The rate of degradation depends on both the stress level and the geometry 
of the adhesive joint. Originality. This work provides a comprehensive description, for the first time, of 
the transition from short-term to long-term strength of acrylic adhesive under constant loading, taking 
into account the influence of joint configuration on the failure rate. Practical value. The results can be 
applied to predict the durability of adhesive joints in structures operating under sustained loads, such 
as anchor systems, and to optimize joint geometry in order to improve reliability. 
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Introduction 

Modern building structures utilize adhesive 
bonding as an alternative to traditional 
mechanical fasteners. However, the long-term 
reliability of such systems depends on their 
ability to resist creep deformation under constant 
loads. The mechanical properties of materials, 
particularly yield strength and ultimate strength, 
change over time: from maximum values (short-
term strength) to minimum values (long-term 
resistance limit). This phenomenon is especially 
important for polymeric adhesive systems, 
including acrylic compounds that are widely used 
in construction for connecting concrete elements, 
anchoring, and structural repairs. 

An important aspect for practical application 
is the time-dependent change in the elastic 
modulus of the adhesive, which must be 
considered when calculating the long-term 
strength of building structures. The obtained 
results complement existing data on the behavior 
of acrylic adhesives under prolonged loading and 
can be used to optimize design solutions 

Analysis of publications 
Research confirms that the long-term strength 
limit of polymeric and adhesive materials often 
constitutes a significant portion of their short-
term strength. For instance, studies [1] on 
polymeric adhesive systems demonstrate that the 
critical stress for prolonged loading can reach  
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80-90% of static strength. Similar results were 
obtained by M. Alfano [2] for acrylic adhesives, 
where long-term strength decreased to 75-88% 
depending on temperature and loading rate. 

A crucial aspect is the linear nature of creep 
deformations, which permits the use of simplified 
models. Research [3] on polymer compounds for 
construction shows that at stresses below 60-70% 
of the strength limit, creep deformations follow 
linear relationships, allowing the application of 
linear viscoelastic theory. However, at higher 
loads (approaching 85%), nonlinear effects 
associated with microdamage are observed. 

Developments [4] applied strength equations 
to predict failure time in polycarbonates, 
emphasizing the role of activation processes in 
damage accumulation. Analyses [5] for acrylic 
adhesives confirmed that the stress-life 
relationship follows an exponential pattern, with 
failure accelerating at elevated temperatures. 
European standards EN 1992-4 (anchoring) [6] 
account for the influence of adhesive joint 
configuration on durability. Studies [7] 
demonstrate that stress non-uniformity in complex 
joints reduces service life by 20-40% compared to 
smooth specimens. Adhesive layer thickness is 
also critical: research by S. Budhe [8] shows that 
thickness exceeding 1 mm increases delamination 
risk due to shrinkage and thermal stresses. 
The problem of time-dependent adhesive 
stiffness changes is actively studied within 
rheological models. Work [9] proposed a model 
describing stress relaxation in acrylic adhesives 
under prolonged loading. Eurocode EN 1990 
standards recommend using reduction factors for 
elastic modulus in creep calculations. 
 
Purpose and Tasks 

The study aims to comprehensively investigate 
the mechanisms of creep deformation 
development in acrylic adhesive systems under 
long-term static loading, establish quantitative 
relationships between stress levels, time to 
failure, and deformation kinetics, and develop 
practical recommendations for applying linear 
and nonlinear creep models. 
Key Research Tasks: 

- Determine the time-dependent creep strain 
behavior under various constant stress levels (0.2, 
0.3, 0.4, 0.6, and 0.85 of the ultimate tensile 
strength); 

- Identify critical conditions for the transition 
from stable creep to progressive deformation 
leading to failure; 

- Establish the long-term strength limit and its 
correlation with short-term strength; 

- Analyze creep curve phases (instantaneous, 
delayed, and steady-state deformations); 

- Quantify deformation rates at different 
process stages; 

- Identify critical parameters governing 
irreversible failure. 
 
Expected Outcomes: 

The findings will enhance predictive methods for 
assessing the durability of adhesive joints in 
construction structures subjected to prolonged 
static loading. 
 
Modeling and Analysis of Deformation 
Kinetics in Polymeric Adhesive Systems 

Investigation of failure mechanisms in polymeric 
adhesive systems under varying loading 
conditions enables assessment of their 
operational reliability in construction 
applications. The fracture process in these 
polymer materials develops through three 
consecutive stages: crack initiation, stable crack 
propagation to critical dimensions, and 
catastrophic crack growth. As demonstrated by 
physico-mechanical testing (Fig. 1), strength 
characteristics are predominantly determined by 
the stress required to activate inherent structural 
defects in the material. 

In the initial state (1), specimens contain 
inherent structural defects. Under applied load, 
two fundamentally different scenarios may 
occur: instantaneous brittle fracture (2) or 
progressive microdamage accumulation (3). In 
the latter case, the process may develop through 
three pathways: 

1. Reaching critical damage density with 
subsequent loss of structural integrity (4); 

2. Stress concentration formation followed 
by microcrack initiation (5-7), where L* and L** 
represent characteristic crack dimensions at 
different development stages; 

3. Brittle fracture (8) as the final damage 
accumulation stage. 

Polymeric adhesive systems in service are 
typically subjected to sustained long-term 
loading. During load application, the stress level 
increases from zero to a predetermined value. 
Under such constant loading, the adhesive 
material exhibits both instantaneous and viscous 
deformations [10-12]. 
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Fig. 1. Failure stages of polymeric adhesive 
systems: 1 – initial material state without 
visible defects; 2 – brittle fracture 
initiation at early stage; 3 – accumulation 
process of microdefects and microdamage 
in material structure; 5 – microdamage; 
6 – development and propagation of 
macroscopic crack through material 
volume; 7 – final failure caused by critical 
macrocrack growth 

 
Under constant loading conditions, the stress 

level may be: Below the material's long-term 
strength limit, Equal to the limit, Exceeding the limit. 

When applied stress remains stable and below 
the long-term strength threshold, the material's 
time-strain curve typically consists of two 
characteristic regions (Fig. 2): 1. Initial 
instantaneous deformation; 2. Subsequent time-
dependent viscous deformation development 

The viscous deformation occurring immediately 
after load application is significantly smaller than 
instantaneous deformation and may often be 
neglected in calculations. 

Following the load application phase, upon 
reaching constant stress level and establishing 
instantaneous deformation, viscous deformation 
begins developing. Its initial rate is relatively 
high, approaching the instantaneous deformation 
rate. However, the viscous deformation rate 
progressively decreases over time, 
asymptotically approaching the stabilization 
phase characteristic of full elastic deformation 
formation. 

Under infinitely prolonged constant loading, 
the viscous deformation approaches a limiting 
value corresponding to the applied stress, with its 
development rate asymptotically approaching 
zero [10, 13]. 

Thus, the total elastic deformation 
(comprising instantaneous and viscous 
components) under such loading conditions 
doesn't cause material failure. Empirical evidence 
shows that viscous (and consequently total) 
deformation in polymeric materials develops 
nonlinearly with time. 

Experimental data [10, 14] demonstrate that: 
Instantaneous deformation increases linearly 
with applied load, Viscous deformations exhibit 
nonlinear temporal behavior while maintaining 
direct proportionality to stress level at any fixed 
time interval 

When exceeding the endurance limit (Fig. 2, 
σ>σLT), qualitatively different deformation 
patterns emerge, ultimately causing material 
failure within finite time. In this regime, the 
strain curve comprises four characteristic 
regions: 1. Instantaneous elastic deformation; 
2. Viscous deformation development with 
initial rate matching Region 1's elastic strain 
rate, followed by progressive deceleration; 3. 
Viscous deformation stabilization at limiting 
value; 4. Plastic deformation progression 
leading to failure. 
 

 

Fig. 2. Time-dependent deformation behavior of 
polymer compounds: a – at stress σ<σLT; 
b – at stress σ>σLT 
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The time period for complete elastic 
deformation development (sum of instantaneous 
and viscous components) concludes when both 
the deformation and its growth rate reach their 
limiting values. Notably, the minimum 
deformation rate at the end of this interval 
remains non-zero and is determined by the 
magnitude of the applied stress. 

At any stress level exceeding the long-term 
strength limit, the elastic deformation phase 
culminates in the cessation of further elastic 
strain development, concurrently initiating the 
formation of plastic deformations. 

After the time interval during which elastic 
deformations develop comes to an end, their 
further growth ceases, and localized plastic 
deformation begins to manifest in the material. At 
this point, the achieved total elastic deformation 
remains constant. 

In this situation, the applied stress throughout 
the entire considered time period can be regarded 
as the elastic limit corresponding to this time 
interval of full elastic deformation development. 

The plastic deformation increases linearly 
with time, at a rate equal to the rate at which the 
limiting elastic deformation is attained. This 
corresponds to the third stage on the time-
dependent deformation development curve. 

In the final, fourth stage, the material's 
resistance becomes exhausted, leading to a rapid, 
avalanche-like failure process culminating in 
complete separation of material parts. 

Since at this stage the primary length change 
of the specimen occurs through delamination and 
separation of its parts rather than through 
deformation of the entire specimen, this phase is 
typically not considered within the theories of 
strength and deformability of elastic-visco-
plastic materials. 

Consequently, both the elastic limit and 
strength limit of the material become time-
dependent: ranging from their maximum value 
(ultimate strength limit) to their minimum (long-
term strength limit). The deformation and 
strength characteristics of filled materials under 
prolonged static loading are determined by the 
rheological properties of the polymer matrix. In 
the presence of fine particulate filler, its 
concentration, distribution, as well as the type of 
stress state and environmental temperature play 
critical roles. 

The material's elastic limit and strength limit 
vary over time, ranging from their maximum 
value (ultimate strength) to the minimum level 
defined as the endurance limit. 

Accordingly, experimental studies were 
conducted to investigate the deformation 
development patterns in acrylic adhesive 
specimens under constant loads over time, with 
applied stresses corresponding to 0.2, 0.3, 0.4, 
0.65, and 0.85 of the failure stress (Fig. 3). 

Analysis of the obtained diagrams revealed 
that at stress levels not exceeding the endurance 
limit, the time-strain curve consists of two main 
stages: (1) the instantaneous deformation stage 
and (2) the progressive development of time-
dependent viscous deformation. 

During the initial stage of the process, the 
magnitude of viscous deformation is negligible 
compared to instantaneous deformation and 
can be disregarded. 

Upon completion of the loading process, 
once a constant stress value is reached and the 
instantaneous deformation is fixed, further 
development of the viscous component begins. 
Initially, the viscous deformation increases at a 
high rate, comparable to the rate of 
instantaneous deformation formation. 
However, as the stress continues to act, the rate 
of viscous deformation growth gradually 
decreases, eventually reaching a minimum 
value corresponding to the completion of full 
elastic deformation development. 

Under prolonged exposure to constant stress, 
the viscous deformation asymptotically 
approaches a steady-state value corresponding to 
the applied load level, while its growth rate 
progressively diminishes over time, tending 
toward zero. This asymptotic behavior reflects 
material state stabilization. Under these 
conditions, the total elastic deformation-
comprising both instantaneous and viscous 
components - does not lead to material failure. 

However, when the applied stress exceeds the 
endurance limit, deformations continue to develop 
only for a limited time interval, after which the 
acrylic adhesive fails. In this case, the time-strain 
curve exhibits four distinct stages (Fig. 3). 

The first stage involves instantaneous elastic 
deformation. The second stage is characterized 
by the onset of viscous deformation, whose initial 
development rate approximates that of the 
instantaneous deformation. Over time, the 
viscous deformation rate decreases, marking a 
gradual transition to subsequent failure phases. 

The process of viscous deformation increase 
continues for a limited time interval, after which its 
growth ceases while maintaining the achieved 
value, followed by the initiation of plastic 
deformation formation and development over time. 
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The time interval during which the complete 
elastic deformation forms as the sum of 
instantaneous and viscous components is 
considered the development period of full elastic 
deformation, which corresponds to the applied 
stress level. 

When the applied stress exceeds the 
material's endurance limit, elastic deformation 
development ceases upon completion of its 
growth stage, and plastic deformation 
initiation begins. 
 

 

a 
 

b 
Fig. 3. Creep curves of acrylic compound: 

a - under tension; b - under compression 

Upon completion of the elastic deformation 
formation period, further elastic development 
ceases, and localized plastic flow regions begin 
to emerge in the adhesive layer. Throughout this 
process, the total elastic deformation magnitude 
remains constant. 

In this scenario, the applied constant stress can 
be interpreted as the elastic limit defined by the 
specific time interval required for full elastic 
deformation development. 

The plastic deformation subsequently 
increases linearly with time, at a rate equivalent 
to the prior development rate of the limiting 
elastic deformation (as shown in region 3 of the 
time-strain curve). 

When plastic deformation development reaches 
its limiting value, the material's resistance becomes 
exhausted, and in region 4 of the diagram, a rapid 
failure process initiates, culminating in complete 
loss of specimen integrity. 

Since this final stage primarily involves 
specimen elongation through material separation 
rather than bulk shape change, it is typically 
excluded from calculations of adhesive systems' 
resistance and deformability. 

Analysis of experimental data revealed that 
the endurance limit (or long-term strength) 
reaches approximately 85% of the ultimate 
failure load. As demonstrated in the presented 
diagrams (Fig. 3), the material's creep behavior 
remained linear regardless of the stress level. 
This enables describing the stress-strain state of 
structural connections (including concrete, 
anchor, and adhesive joints) with engineering-
appropriate accuracy using linear elasticity 
theory relationships, applicable to both short-
term and long-term loading conditions. 

In generalized form, the long-term tensile 
strength (or durability expressed as time-to-
failure under specified load) of acrylic adhesive 
compounds can be accurately described by an 
empirical equation reflecting the dependence of 
service life on both stress and temperature [10]. 

The load-bearing reliability of a bonded joint 
is determined by its design: connections with 
complex adhesive layer geometry are most 
vulnerable, as their performance depends on both 
the joint configuration and adhesive thickness. 

When modeling the stress-strain state of 
structural connections using acrylic adhesives 
under long-term loading, it is essential to account 
for time-dependent changes in their deformation 
properties, governed by the evolving elastic 
modulus of the adhesive material. 

Conclusion 

The endurance limit of acrylic adhesive systems 
constitutes approximately 85% of their ultimate 
failure load, as confirmed by experimental 
results. The creep behavior of these adhesive 
systems under various long-term load levels 
exhibits linear characteristics, enabling the 
application of linear creep theory for stress-strain 
analysis in structural connections under both 
short-term and sustained loading conditions. 
The tensile durability of acrylic adhesive systems 
can be adequately described as a function of 
applied stress and temperature, as confirmed by 
the corresponding computational equation. 
Failure of adhesive systems occurs due to 
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damage accumulation - including crack 
formation and other microdefects. Higher stress 
levels directly reduce joint longevity. 
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Моделювання та дослідження кінетики 
деформацій у полімерних клейових системах 
 
Анотація. проблема. У статті досліджується 
зміна межі пружності та межі міцності 
акрилового клею у часі – від максимального 
значення (короткочасна міцність) до 
мінімального (межа тривалого опору). 
Експериментально вивчено розвиток деформацій 
у зразках при постійних навантаженнях, що 
становлять від 0,2 до 0,85 від руйнівних. 
Показано, що при напругах нижче межі 
тривалого опору крива деформацій включає дві 
ділянки: миттєві деформації і в'язкі, що 
розвиваються в часі. Руйнування відбувається 
внаслідок накопичення пошкоджень (тріщин, 
дефектів), причому його швидкість залежить від 
рівня напруги та конфігурації клейового шва. 
Мета. Метою дослідження є встановлення 
закономірностей зміни межі пружності та межі 
міцності акрилового клею в часі під дією 
постійного навантаження, а також аналіз 
процесу накопичення пошкоджень у клейових 
з'єднаннях залежно від рівня напруги. 
Методологія. Експериментальне дослідження 
передбачало випробування зразків акрилового 
клею при сталих навантаженнях, що складали від 
20 % до 85 % від короткочасної міцності 
(руйнівного навантаження). Спостерігали за 
розвитком деформацій у часі та фіксували зміну 
характеру руйнування. Результати. 
Встановлено, що при напругах, менших за межу 
тривалого опору, крива деформацій має дві 
характерні ділянки: миттєві (еластичні) 

деформації та в'язкі (часові), які розвиваються 
поступово. Показано, що руйнування відбувається 
внаслідок поступового накопичення 
мікропошкоджень, зокрема тріщин і дефектів, 
при цьому швидкість деградації залежить як від 
рівня навантаження, так і від геометрії 
клейового шва. Оригінальність. Робота вперше 
комплексно описує перехід від короткочасної до 
тривалої міцності акрилового клею в умовах 
постійного навантаження, з урахуванням впливу 
конфігурації з'єднання на швидкість руйнування.. 
Практична цінність. Отримані результати 
можуть бути використані для прогнозування 
довговічності клейових з'єднань в конструкціях, 
що працюють в умовах постійного 
навантаження, зокрема в анкерних системах, і 
для оптимізації їх геометрії з метою підвищення 
надійності. 

Ключові слова: повзучість, акриловий клей, 
полімерна клейова система, короткочасна 
міцність, межа тривалого опору, деформації, 
будівельні з'єднання  
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